Silolarda Kullanılan Elevatör Kovalarının Maliyet ve Mukavemet Açısından Ashby Metodu ile Optimizasyonu
Silo sistemleri hububat depolamak için kullanılan yapılardır. Genellikle silindirik ya da dikdörtgensel şekilde olup metal, beton ya da tuğla gibi malzemelerden inşa edilirler. Silolar, taşıma, havalandırma ve tahliye gibi sistemleri içerebilmektedir. Elevatörlerdeki kovalar, çeşitli tahıl türlerini taşıyan, taşıma sistemi parçalarından biridir. Bu çalışma, kovalar için maliyet ve mukavemet açısından optimum, enjeksiyon kalıplamaya uygun malzemenin seçilmesini amaçlamaktadır. Bu doğrultuda, Çukurova Silo Firmasında saatte 80 Ton buğdayın taşınmasında kullanılan özel bir kova türü incelenmiştir. Tahıl taşıyan kovalara uygun malzeme seçimi için Ashby yöntemi olarak adlandırılan ileri malzeme seçme tekniği uygulanmıştır. Taşıma esnasında kovada oluşan gerilmeleri bulmak için ANSYS® Mechanical kullanılmıştır. Seçilen malzemeler özelliklerine göre kıyaslanmıştır. Kova üretimi için bazı malzemeler belirlenmiştir. Son olarak, malzemeler ANSYS® Mechanical sonuçlarına göre karşılaştırılıp özel tip kova üzerinde analiz edilmiştir. Sonuç olarak cam elyaf katkılı PA6, optimum malzeme olarak belirlenmiştir.
Application of Ashby Method for Optimization of High Strength, Low Priced Bucket for Silo Elevators
Silo systems are used to store the bulk grain. In general, they are designed with cylindrical or rectangular shape with steel, concrete, or brick materials. Silos have subsystems for operation such as transportation, aeration, and discharge. Buckets in elevators are one of the major parts of transportation system which carries various kinds of grains. This study aims to select the optimum material for buckets in terms of strength and cost which is suitable for injection molding that are used in different climates. For this purpose, in Çukurova Silo Company, a specific type of bucket which is used for the transportation of 80 Tons of wheat per hour had been analyzed. To choose the suitable materials for buckets that carry grains, advanced material selection technique, which is called as Ashby method, had been applied. ANSYS® Mechanical had been used to find out stresses during the carriage of the grain. Selected materials were ranked with respect to their properties. Some materials had been determined for the usage of production of buckets. Finally, the materials had been compared with respect to the ANSYS® Mechanical results and tested for this specific type of bucket. As results, PA6 with fiber-glass variant had been chosen as optimum material.
___
- Ansys Granta Edupack. www.ansys.com/products/materials
- Ansys Mesh Quality and Advanced Topics Lecture 7 ANSYS, Inc 2015
- Ashby M. F. Materials Selection in Mechanical Design, 4th edition, Elsevier Ltd. 2011.
- Ashby M.F., Schodek D., Ferreira P. Nanomaterials, Nanotechnologies and Design, 1th edition, 2009. Bai Qiang, Bai Yong Subsea Pipeline Design, Analysis, and Installation 2014; 196-197.
- Budynas R. , Nisbett J. Shigley’s Mechanical Engineering Design, 9th edition. McGraw Hill. 2011
CES Selector. www.grantadesign.com 2016.
- Clausen J., Hansson S.O., and Nilsson F. Generalizing the Safety Factor approach 2006; 964-971.
- Delibaş H., Uzay Ç., and Geren N., Advanced Material Selection Technique For High Strength and Lightweight Spur Gear Design. European Mechanical Science 2017; 1(4): 133-140.
- Dieter and Schmidt. Engineering Design, 4th edition. McGraw Hill Company. 2009.
- Koster, K. Bulk material discharge of bucket elevators, especially high-capacity bucket elevators. Aufbereitungs-Technik 1984; 25(8): 450–463.
- Patel S., Patel S., Patel J. A Review on Design and Analysis of Bucket Elevator. Ganpat University.
International Journal of Engineering Research and Applications (IJERA) 2012; 2(5): 018-022.
- Rademacher F. Non-spill discharge characteristics of bucket elevators. Powder Technol. 1979; 22(2): 215–241.
- Srikar V. T., Spearing V. T., Materials Selection in Micromechanical Design :An Application of the Ashby Approach, Journal Of Microelectromechanical Systems 2003; 12(1) 3-10.
- Vaidya A., Pathak K., Mechanical stability of dental materials. Applications of Nanocomposite Materials in Dentistry 2019; 17.7.2 Fracture toughness.
- Zhuming Bi Finite Element Analysis Applications 2018.