ÖZEL BİR BAŞLANGIÇ KOŞULU ALTINDA (N+1) BOYUTLU BENJAMİN- ONO DENKLEMİ İÇİN WHITHAM MODÜLASYON TEORİSİ

Bu çalışmada, paraboloid tipi bir dalga cephesi boyunca uzanan basamak tipi bir başlangıç koşulu için (n+1) boyutlu Benjamin- Ono denkleminin dispersif şok dalga çözümleri incelenmiştir. Bu amaçla, (n+1) boyutlu Benjamin- Ono denklemi uygun bir çözüm formu kullanılarak,  (1+1) boyutlu değişken katsayılı Benjamin- Ono (nBO) tipi bir denkleme indirgenmiştir. nBO denkleminin dispersif şok dalgası çözümünü betimleyen Whitham modülasyon denklemleri uygun Riemann tipi değişkenler cinsinden türetilmiştir. Türetilen bu modülasyon denklemlerinin sayısal çözümlerinden elde edilen dispersif şok dalgası çözümleriyle, nBO denkleminin doğrudan sayısal çözümleri n=4 boyutu için karşılaştırılmış ve aralarında iyi bir uyumun olduğu görülmüştür. (n+1) boyutlu Benjamin- Ono denkleminin paraboloid tipi bir dalga cephesi boyunca yayılan dispersif şok dalgası çözümünün, indirgenmiş (1+1) boyutlu nBO denkleminin dispersif şok dalgası çözümüyle betimlenebileceği gösterilmiştir. 

WHITHAM MODULATION THEORY FOR (N+1) DIMENSIONAL BENJAMIN- ONO EQUATION WITH A SPECIAL INITIAL CONDITION

Dispersive shock waves (DSWs) in (n+1) dimensional Benjamin–Ono equation (nDBO) is considered using step like initial data along a paraboloid front. Employing a similarity reduction exactly reduces the study of such DSWs in (n + 1) dimensions to finding DSW solutions of (1 + 1) dimensional equations. With this ansatz, the nDBO equation can be exactly reduced to a Benjamin–Ono (nBO) type equation. Whitham modulation equations which describe DSW evolution in the nBO equation are derived and Riemann type variables are introduced. DSWs obtained from the numerical solutions of the corresponding Whitham systems and direct numerical simulations of the nBO equation are compared with very good agreement obtained. It is concluded that the (n+1) DSW behavior along self similar parabolic fronts can be effectively described by the DSW solutions of the reduced (1 + 1) dimensional equations.

___

  • [1] WHITHAM, G.B., Linear and Nonlinear Waves, Wiley, New York, USA, 1974.
  • [2] WHITHAM, G.B., “Non-linear Dispersive Waves”, Proceedings of The Royal Society Series A Mathematical Physics, 283, 238-261, 1965.
  • [3] GUREVICH, A., PITAEVSKII, L., “Nonstationary Structure of a Collisionless Shock Wave”, Zhurnal Eksperimentalnoi Teoreticheskoi Fiziki, 65, 590-604, 1973.
  • [4] DRISCOLL, C., O’NEIL, T., “Modulational Instability of Cnoidal Wave Solutions of the Modified Korteweg–de Vries Equation”, Journal of Mathematical Physics, 17(7), 1196-1200, 1976.
  • [5] GUREVICH, A., KRYLOV, A., “Dissipitionless Shock Waves in Media With Positive Dispersion”, Eksperimentalnoi Teoreticheskoi Fiziki, 92, 1684-1699, 1987.
  • [6] MATSUNO, Y., “Nonlinear Modulation of Periodic Waves in the Small Dispersion Limit of The Benjamin- Ono Equation, Physical Review E, 6, 7934- 7939, 1998.
  • [7] KAMCHATNOV, A.M., KUO, Y.H., LIN, T.C., HORNG, T.L., GOU, S.C., EL, G.A., GRIMSHAW, R.H.J., “Undular Bore Theory For The Gardner Equation”, Physical Review E, 86, 036605, 2012.
  • [8] ABLOWITZ, M.J., DEMİRCİ, A., MA, Y.P., “Dispersive Shock Waves in The Kadomtsev- Petviashvili And Two Dimensional Benjamin- Ono Equations”, Physica D, 333, 84-98, 2016.
  • [9] ABLOWITZ, M.J., BIONDINI G., WANG, Q., “Whitham Modulation Theory For The Kadomtsev- Petviashvili Equation”, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 473, 20160695, 2017.
  • [10] ABLOWITZ, M.J., BIONDINI G., WANG, Q., “Whitham Modulation Theory For The Two Dimensional Benjamin- Ono Equation”, Physical Review E, 96(3), 032225, (2017).
  • [11] ABLOWITZ, M.J., COLE, J.T., RUMANOV, I., “On The Whitham System For The Radial Schrödinger Equation”, Studied in Applied Mathematics, 142(3), 269-313, 2019.
  • [12] HOEFER, M., ILAN, B., “Theory of Two- Dimensional Oblique Dispersive Shock Waves in Supersonic Flow of a Superfluid”, Physical Review A, 80(6), 061601, 2009.
  • [13] ABLOWITZ, M.J., SEGUR, H., “Long Internal Waves in Fluids of Great Depth”, Studies in Applied Mathematics, 62, 249-262, 1980.
  • [14] CONDE, J.M., GÜNGÖR, F., “Analysis of The Symmetry Group And Exact Solutions of The Dispersionless KP Equation in N+1 Dimensions”, Journal of Mathematical Physics, 59(11), 111501, 2018.
  • [15] LUKE, J.C., “A Perturbation Method For Nonlinear Dispersive Wave Problems”, Proceedings of Royal Society A, 292, 403-412, 1966.
  • [16] BENJAMIN, T.B., “Internal Waves of Permanent Form in fluids of Great Depth”, Journal of Fluid Mechanics, 29(3), 559-592, 1966.
  • [17] MATSUNO, Y., SHCHESNOVICH, V.S., KAMCHATNOV, A.M., KRAENKEL, R.A., “Whitham Method For The Benjamin- Ono- Burgers Equation And Dispersive Shock”, Physical Review E, 75, 016307, 2007.
  • [18] SHAMPINE, L.F., “Solving Hyperbolic PDEs in MATLAB”, Applied Numerical Analysis And Computational Mathematics, 2(3), 346-358, 2005.
  • [19] ENGQUIST, B., LÖTSTEDT, P., SJÖGREEN, B., “Nonlinear Filters For Efficient Shock Computation”, Mathematics of Computation, 52, 509-537, 1989.
  • [20] COX, S.M., MATTHEWS, P.C., “Exponential Time Differencing For Stiff Systems”, Journal of Computational Physics, 176, 430-455, 2002.
  • [21] KASSAM, A.K., TREFETHEN, L.N., “Fourth- Order Time Stepping For Stiff PDEs”, SIAM Journal On Scientific Computing, 26(4), 1214-1233, 2005.
  • [22] ONO, H., “Algebraic Solitary Waves in Stratified Fluids”, Journal of Physical Society of Japan, 39, 1082, 1975.
  • [23] http://youtu.be/5aHmjx1yewk, “N=4 İçin nBO Denkleminde t=0 ve t=15 Arasındaki Dispersif Şok Dalgası Yayılımının Simülasyonu”, (erişim tarihi: 13.07.2019).