ÇELİK KİRİŞLİ KÖPRÜLERDE YÜKE BAĞLI YORULMA ETKİSİNİN İNCELENMESİ

Yorulma, yapının güvenliğine etki eden önemli bir tasarım durumudur. Araç yükünün döngüsel etkisinden dolayı çelik kirişlerin bağlantı detaylarında yorulma kaynaklı yapısal çatlaklar oluşmakta, bu çatlaklara karşı gerekli tedbirler alınmazsa çatlaklar büyümekte ve sonuçta yapısal elemanlar iç kuvvetleri taşıyamayan kararsız bir duruma gelip fonksiyonunu yitirmektedir.  AASHTO Köprü Tasarım Şartnamesi çelik kirişli köprülerde yorulmayı yüke bağlı ve distorsiyona bağlı olarak sınıflandırmış, yorulma güvenliğini sağlamak için yapısal elemanlarda çatlak oluşumunu önlemeyi ya da en aza indirmeyi hedeflemiştir. Yüke bağlı yorulma incelemesinde; yorulma çatlaklarının oluşmasını önlemek için yapısal elemanlarda yük ve gerilme sınırları dikkate alınmakta, uygun bağlantı detay kategorisi için yorulma güvenliği kontrol edilmektedir. Bu çalışmada üç açıklıklı çelik kirişli bir köprü CSiBridge paket programıyla yorulma yükleri altında analiz edilmiştir, analizde AASHTO Şartnamesinde yorulma tasarım özellikleri kullanılmıştır. Analiz sonuçlarına göre yapıda uygun yorulma kategorisi dikkate alınarak yapının yorulma yönünden güvenli olduğu ispat edilmiştir.

THE INVESTIGATION OF FATIGUE EFFECT OF LOAD-INDUCED IN STEEL GIRDER BRIDGES

Fatigue is an important design state affecting the safety of the structure. Due to the cyclical effect of vehicle load, fatigue-induced structural cracks occur in the connection details of steel girders. If the necessary measures are not taken against these cracks; the cracks grow and as a result the structural elements become unstable, it can not carry the internal forces and lose their function. The AASHTO Bridge Design Specification classifies fatigue as load- dependent and distortion-dependent in steel girder bridges and in order to ensure fatigue safety, it is aimed to prevent or minimize the formation of cracks in structural elements. In load-induced fatigue investigation; load and stress limits are taken into account in structural elements to prevent fatigue cracks and fatigue safety is checked for the appropriate connection detail category. In this study, a three-span steel girder bridge was analyzed under fatigue loads with CSiBridge package program. In the analysis, fatigue design properties of AASHTO Specification were used. According to the results of the analysis, it has been proved that the structure is safe from fatigue considering the appropriate fatigue category.

___

  • [1] AASHTO LRFD Bridge Design Specifications, 6th ed., American Association of State Highway and Transportation Officials, Washington,DC, 2012
  • [2] https://www.structuremag.org/wp-content/uploads/2016/11/D-StrucAnalysis-Khatri-Dec16-1.pdf (Last Access 10.07.2019)
  • [3] MORI, T., LEE, H. H., KYUNG, K. S., “Fatigue Life Estimation Parameter for Short and Medium Span Steel Highway Girder Bridges”, Engineering Structures, 29(10), 2762-2774, 2007.
  • [4] https://www.fhwa.dot.gov/bridge/steel/pubs/if12052/volume12.pdf (Last Access 10.07.2019)
  • [5] http://saveourbridges.com/basics.html (Last Access Date 10.07.2019)
  • [6] http://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1146&context=ndor (Last Access 10.07.2019)
  • [7] https://www.dot.state.mn.us/bridge/pdf/lrfdmanual/lrfdbridgedesignmanual.pdf (Last Access 10.07.2019)
  • [8] HAGHANI, R., AL-EMRANI, M., HESHMATI, M., “Fatigue-Prone Details in Steel Bridges”, Buildings, 2(4), 456-476, 2012.
  • [9] https://www.researchgate.net/publication/305950405_Need_for_Fatigue_Assessment_of_Steel_Bridges (Last Access 10.07.2019)
  • [10] http://www.dot.ca.gov/des/techpubs/manuals/bridge-design-practice/page/bdp-6.pdf (Last Access 10.07.2019)
  • [11] http://www.dot.ca.gov/des/techpubs/manuals/bridge-design-practice/page/bdp-9.pdf (Last Access 18.04.2019)
  • [12] ABDI, F., QIAN, Z., MOSALLAM, A., IYER, R., WANG, J. J., LOGAN, T., “Composite Army Bridges under Fatigue Cyclic Loading”, Structure and Infrastructure Engineering, 2(1), 63-73, 2006.
  • [13] MORI, T., LEE, H. H., KYUNG, K. S., “Fatigue Life Estimation Parameter for Short and Medium Span Steel Highway Girder Bridges”, Engineering Structures, 29(10), 2762-2774, 2007.
  • [14] KAWAKAM, Y., KANAJI, H. AND OKU, K., “Study on Application of Field Signature Method (FSM) to Fatigue Crack Monitoring on Steel Bridges”, Procedia Engineering, 14, 1059-1064, 2011.
  • [15] FASL, J., HELWIG, T AND WOOD, S. L., “Probabilistic Method for Estimating Remaining Fatigue Life in Steel Bridges using Measured Strain Data”, Journal of Civil Structural Health Monitoring, 3(4), 317-324, 2013.
  • [16] YE, X. W., SU, Y. H. AND HAN, J. P., “A State-Of-The-Art Review on Fatigue Life Assessment of Steel Bridges”, Mathematical Problems in Engineering, 2014.
  • [17] SAKAGAMI, T., “Remote Nondestructive Evaluation Technique using İnfrared Thermography for Fatigue Cracks in Steel Bridges”, Fatigue & Fracture of Engineering Materials & Structures, 38(7), 755-779, 2015.
  • [18] ZHANG, J., AU, F. T. K., “Fatigue Reliability Assessment Considering Traffic Flow Variation Based On Weigh-İn-Motion Data”, Advances in Structural Engineering, 20(1), 125-138, 2017.
  • [19] KONG, X., LI, J., COLLINS, W., BENNETT, C., LAFLAMME, S., JO, H., “A Large-Area Strain Sensing Technology for Monitoring Fatigue Cracks in Steel Bridges”, Smart Materials and Structures, 26(8), 085024, 2017.
  • [20] KWAD, J., ALENCAR, G., CORREIA, J., JESUS, A., CALCADA, R., KRIPAKARAN, P., “Fatigue Assessment of an Existing Steel Bridge by Finite Element Modelling and Field Measurements. in Journal of Physics: Conference Series”, 843(1), p 012038, IOP Publishing, 2017.
  • [21] SEKIYA, H., MARUYAMA, O., MIKI, C., “Visualization System for Bridge Deformations under Live Load Based on Multipoint Simultaneous Measurements of Displacement and Rotational Response using MEMS Sensors”, Engineering Structures, 146, 43-53, 2017.
  • [22] HASNI, H., ALAVI, A. H., JIAO, P.AND LAJNEF, N., “Detection of Fatigue Cracking in Steel Bridge Girders: A Support Vector Machine Approach”, Archives of Civil and Mechanical Engineering, 17(3), 609-622, 2017.
  • [23] DJOKOVIĆ, J. M., NIKOLIĆ, R. R., BUJNÁK, J., HADZIMA, B., “Estimate of The Steel Bridges Fatigue Life by Application of The Fracture Mechanics. In IOP Conference Series: Materials Science and Engineering” 419(1), p. 012010, IOP Publishing, 2018.
  • [24] KARUNANANDA, K., OHGA, M., DISSANAYAKE, P. B. R., SIRIWARDANE, S., “Effect of High Amplitude Loading on Fatigue Life Prediction of Steel Bridges”, Procedia Engineering, 14, 521-528, 2011.
  • [25] PIPINATO, A., PELLEGRINO, C., MODENA, C., “Fatigue Assessment of Highway Steel Bridges in Presence of Seismic Loading”, Engineering Structures, 33(1), 202-209, 2011.
  • [26] MACHO, M., RYJÁČEK, P., MATOS, J. C., “Static and Fatigue Test on Real Steel Bridge Components Deteriorated by Corrosion”, International Journal of Steel Structures, 19(1), 110-130, 2019.
  • [27] CSiBridge V15-V20, Integrated 3-D Bridge Analysis, Design and Rating, Computers and Structures Inc.
  • [28] BARKER, R. M., PUCKETT, J. A., Design of Highway Bridges: An LRFD Approach, John Wiley and Sons (3rd ed.), Canada, USA,2013.