KAOLEN SÜSPANSİYONLARININ SUSUZLAŞTIRILMASINDA KOAGÜLANT VE FLOKÜLANTLARIN ETKİSİ

   Kaolin atıkları mineral endüstrisinde yaygın olarak üretilir. Negatif yüklü olan bu atıklar zayıf flokülasyon özelliklerine sahip kararlı dağılımlar oluşturmaya eğilimlidirler. Koagülasyon-flokülasyon işlemleri, koloidal parçacıkları atık sulardan uzaklaştırmak için uygun yöntemlerdir. Bu çalışmada, mono/multivalent iyonların (koagülant) ve polimerlerin (flokülant) kaolenin çökelme ve elektrokinetik davranışlarına etkisi araştırılmıştır. Deneysel çalışmalarda, koagülant olarak Al2(SO4)3, FeCl3, MgCl2, CaCl2, NaCl ve flokülant olarak, anyonik (A150), katyonik (C521) ve noniyonik (N100) polimerler kullanılmıştır. Kaolenin sıfır yük noktası pH 4.2 olarak belirlenmiştir. Koagülantların etkinliği, metal iyonlarının iyoniklik derecesinin artması ile artmıştır. Koagülantlar arasında FeCl3 en yüksek verimi (%91) sağlamıştır. Koagülantlar ile düşük sedimantasyon hızları (6.3-12.2 mm/dk) elde edilmiştir. En yüksek sedimantasyon verimliliği (%94) anyonik flokülant ile sağlanmış ve tüm flokülantlar ile yaklaşık olarak aynı çökelme hızına (58 mm/dk) ulaşılmıştır.

EFFECT OF COAGULANTS AND FLOCCULANTS ON DEWATERING OF KAOLIN SUSPENSIONS

   Kaolin tailings are commonly generated in the mineral industry. They are invariably negatively charged and consequently tend to form stable dispersions with poor flocculation characteristics. Coagulation–flocculation treatments are suitable methods for removing colloidal particles from wastewater. In this study, the effects of mono/multivalent ions (coagulants) and polymers (flocculants) on the sedimentation and electrokinetic behaviours of kaolin have been investigated. In experimental studies, Al2(SO4)3, FeCl3, MgCl2, CaCl2, NaCl were used as coagulant, while as flocculant anionic (A150), cationic (C521) and nonionic (N100) polymers were used. Isoelectric point of kaolin was determined as pH 4.2. The effectiveness of coagulants increased with the increase in the ionicity degree of the metal ions. Among the coagulants, FeCl3 provided the highest efficiency (91%). Low sedimentation velocities (6.3-12.2 mm/min) were obtained with coagulants. The highest sedimentation efficiency (94%) was achieved with anionic flocculants and the same sedimentation velocity (58 mm/min) was reached with all flocculants. 

___

  • [1] MPOFU, P., ADDAI-MENSAH, J., RALSTON, J., “Investigation of the Effect of the Polymer Structure Type on Flocculation Rheology and Dewatering Behaviour of Kaolinite Dispersions”, International Journal of Mineral Processing, 71, 247-268, 2003.
  • [2] NASSER, M.S., JAMES, A.E., “Effect of Polyacrylamide Polymers on Floc Size and Rheological Behaviour of Kaolinite Suspensions”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 301, 311–322, 2007.
  • [3] NASIM, T., PAL, A., GIRI, A., GOSWAMI, L., BANDYOPADHYAY, A., “Exploring Polyelectrolytic Features of the Exudate from Native Acacia Nilotica for Flocculating Aqueous Kaolin Suspension”, Separation and Purification Technology, 131, 50–59, 2014.
  • [4] NASSER, M.S., JAMES, A.E., “The Effect of Polyacrylamide Charge Density and Molecular Weight on the Flocculation and Sedimentation Behaviour of Kaolinite Suspensions”, Separation and purification Technology, 52, 241-252, 2006.
  • [5] ADDAI-MENSAH, J., “Enhanced Flocculation and Dewatering of Clay Mineral Dispersions”, Powder Technology, 179, 73-78, 2007.
  • [6] LEE, K.E., MORAD, N., POH, B.T., TENG, T.T., “Comparative Study on the Effectiveness of Hydrophobically Modified Cationic Polyacrylamide Groups in the Flocculation of Kaolin”, Desalination, 270, 206–213, 2011.
  • [7] GLOVER, S.M., YAN, Y., JAMESON, G.J., BIGGS, S., “Dewatering Properties of Dual-Polymer-Flocculated Systems”, International Journal of Mineral Processing, 73, 145-160, 2004.
  • [8] OWEN, A.T., FOWEL, P.D., SWIFT, J.D., “The Impact of Polyacrylamide Flocculant Solution Age on Flocculation Performance”, International Journal of Mineral Processing, 67, 123 – 144, 2002.
  • [9] GREGORY, J., BARANY, S., “Adsorption and Flocculation by Polymers and Polymer Mixtures”, Advances in Colloid and Interface Science, 169, 1-12, 2011.
  • [10] LU, Q., YAN, B., XIE, L., HUANG, J., LIUB, Y., ZENG H., “A Two-Step Flocculation Process on Oil Sands Tailings Treatment Using Oppositely Charged Polymer Flocculants”, Science of the Total Environment, 565, 369–375, 2016.
  • [11] DRYABINA, S., FOTINA, K., NAVROTSKII, A., NOVAKOV, I., “The Flocculation of Kaolin Aqueous Dispersion by Two Cationic Polyelectrolites”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 515, 12-21, 2017.
  • [12] LEE, C.S., ROBINSON, J., CHONG, M.F., “A Review on Application of Flocculants in Wastewater Treatment”, Process Safety and Environmental Protection, 92, 489-508, 2014.
  • [13] DUC, M., GABORIAUD, F., THOMAS, F., “Sensitivity of the Acid–Base Properties of Clays to the Methods of Preparation and Measurement 1. Literature Review”, Journal of Colloid and Interface Science, 289, 139–147, 2005.
  • [14] VERCELLONEA, S.Z., SHAM, E., TORRES, E.M.F., “Measure of Zeta Potential of Titanium Pillared Clays”, Procedia Materials Science, 8, 599-607, 2015.
  • [15] GÖÇER, M., “Kil Minerallerinin Flokülasyon ve Koagülasyon Yöntemleri ile Çöktürme Karakteristiklerinin İncelenmesi (Investigation of Sedimentation Characteristics of Clay Minerals by Flocculation and Coagulation Methods)”, Msc Thesis, Selcuk University Institute of Natural Science, Konya, 2016.
  • [16] OZKAN, A., YEKELER, M., “Coagulation and Flocculation Characteristics of Celestite with Different Inorganic Salts and Polymers”, Chemical Engineering and Processing, 43, 873–879, 2004.
  • [17] TOMBÁCZ, E., SZEKERES, M., “Surface Charge Heterogeneity of Kaolinite in Aqueous Suspension in Comparison with Montmorillonite”, Applied Clay Science, 34, 105–124, 2006.
  • [18] GUPTA, V., MILLER, J.D., “Surface Force Measurements at the Basal Planes of Ordered Kaolinite Particles”, Journal of Colloid and Interface Science, 344, 362–371, 2010.
  • [19] AVADIAR, L., LEONG, Y.K., FOURIE, A., NUGRAHA, T., CLODE, P.L., “Source of Unimin Kaolin Rheological Variation Ca2+ Concentration”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 459, 90–99, 2014.
  • [20] MIU, F., ZHAO, Q., LUI, L., “Experimental Study on the Electrokinetics of Kaolinite Particles in Aqueous Suspension”, Physicochemical Problems of Mineral Processing, 49, 659–672, 2013.
  • [21] NDLOVU, B., FARROKHPAY, S., FORBES, E., BRADSHAW, D., “Characterisation of Kaolinite Colloidal and Flow Behaviour Via Crystallinity Measurements”, Powder Technology, 269, 505–512, 2015.
  • [22] ERSOY, B., ALPTEKİN, A., SARIIŞIK, A., GÜRCAN, S., ERKAN, Z.E., YILDIZ, A., “Doğal Taş İşleme Tesis Atıksularından Bulanıklığın Giderilmesinde Farklı Yöntemlerin ve Farklı Koagülantların Etkisi”, Madencilik ve Çevre Sempozyumu, 117-125, Ankara, 2005.
  • [23] HOGG, R., “Flocculation and Dewatering", International Journal of Mineral Processing,58, 223-236, 2000.
  • [24] PATIENCE, M., ADDAI-MENSAH, J., RALSTON, J., “Investigation of the Effect of Polymer Type on Flocculation, Rheology and Dewatering Behaviour of Kaolinite Dispersions”, International Journal of Mineral Processing, 71, 247-268, 2003.
  • [25] BESRA, L., SENGUPTA, D.K., ROY, S.K., AY, P., “Polymer Adsorption: its Correlation with Flocculation and Dewatering of Kaolin Suspensions in Presence and Absence of Surfactants”, International Journal of Mineral Processing, 66 (1–4), 183–202, 2002.
  • [26] NABZAR, L., PEFFERKON, E., VAROQUI, R., “Stability of Polymer–Clay Suspensions. The Polyacrylamide–Sodium Kaolinite Systems”, Colloids and Surfaces, 30, 345–353, 1988.
  • [27] LEE, L.T., RAHBARI, R., LECOURTIER, J., CHAUVETEAU, G., “Adsorption of Polyacrylamides on the Different Faces of Kaolinites”, Journal of Colloid and Interface Science, 147, 351–357, 1991.
  • [28] MPOFU, P., MENSAH, J. A., RALSTON, J., “Investigation of the Effect of the Polymer Structure Type on Flocculation Rheology and Dewatering Behaviour of Kaolinite Dispersions”, International Journal of Mineral Processing, 71, 247-268, 2003.
  • [29] KIM, S., PALOMINO, A. M., “Polyacrylamide-Treated Kaolin: A Fabric Study”, Applied Clay Science, 45(4), 270–279, 2009.
  • [30] DUMAN, O., TUNÇ, S., “Electrokinetic and Rheological Properties of Na-Bentonite in Some Electrolyte Solutions”, Microporous and Mesoporous Materials, 117, 331–338, 2009.
  • [31] ZADAKA, D., RADIAN, A., MISHAEL, Y.G., “Applying Zeta Potential Measurements to Characterize the Adsorption on Montmorillonite of Organic Cations as Monomers, Micelles, or Polymers”, Journal of Colloid and Interface Science, 352, 171–177, 2010.