DÖKÜM VE HADDELENMİŞ AZ31B MAGNEZYUM ALAŞIMININ KURU ŞARTLARDA AŞINMA DAVRANIŞININ KIYASLANMASI

   Aşınma direnci literatürde yeterli bilgi olmaması sebebiyle magnezyum alaşımlarının uygulama alanlarını kısıtlayabilecek önemli teknik özelliklerden biridir. Bu çalışmada pin-on disk yöntemi kullanılarak kuru çalışma şartlarında döküm ve haddelenmiş AZ31B magnezyum alaşımlarının aşınma davranışı incelenmiştir. Aşınma hızı 1500 m sabit kayma mesafesi, 0,25-0,50-1,00 ve 2,00 m/s kayma hızı ve 10-20-40 ve 80 N gibi farklı yüklerde ölçülmüştür. Aşınmış yüzeylerin yüzey morfolojisi SEM cihazı kullanılarak incelenmiştir. Haddelenmiş alaşım ince mikroyapı ve daha yüksek sertlik özelliklerinden dolayı döküm alaşımdan daha iyi aşınma direnci sergilemiştir. Aşınma haritalarına göre sonuçlar en büyük yük ve en yüksek kayma hızında aşırı plastik deformasyonun ana aşınma mekanizması olduğunu göstermiştir.

A COMPARISON OF THE DRY SLIDING WEAR BEHAVIOR OF AS-CAST AND HOT ROLLED AZ31B MAGNESIUM ALLOY

   Wear resistance is one of the important technological properties of magnesium alloys that may limit their practical applications, though limited information is available in the literature. In this study, wear behavior of as-cast and hot rolled AZ31B magnesium alloy on dry-sliding conditions was investigated using a pin-on disc method. Wear rate was measured at a fixed sliding distance of 1500 m and at different sliding velocities of 0.25, 0.50, 1.00 and 2.00 m/s, as well as different applied loads of 10, 20, 40 and 80 N. Surface morphology of worn surface of the alloy was analyzed using a SEM/EDS. Hot rolled alloy exhibited a better wear resistance than the as-cast alloy due to a finer microstructure and higher hardness. Results showed that ultra-severe plastic deformation was found to be the main wear mechanism at the highest applied load and sliding velocity for the alloy at both metallurgical conditions according to wear maps. 

___

  • [1] MORDIKE, B.L., EBERT, T., “Magnesium: Properties-applications-potential”, Materials Science and Engineering: A, 302, 37-45, 2001.
  • [2] KAINER, K.U., BUCH, F., The Current State of Technology and Potential for Further Development of Magnesium Applications. In KAINER, K.U. (Eds) Magnesium Alloys and Technology (1-22), Wiley-VCH Verlag, Weinheim, Germany, 2003.
  • [3] WILLBOLD, E., WEIZBAUER, A., LOOS, A., SEITZ, J.M., ANGRISANI, N., H. WINDHAGEN, REIFENRATH, J., “Magnesium alloys: A stony pathway from intensive research to clinical reality. Different test methods and approval‐related considerations”, Journal of Biomedical Materials Research Part A, 105, 329–347, 2017.
  • [4] NASUTION, A.K. HERMAWAN, H., “Degradable Biomaterials for Temporary Medical Implants. In MAHYUDIN, F., HERMAWAN, H. (Eds), Biomaterials and Medical Devices”. Springer, Heidelberg, 127-160, 2016.
  • [5] LUO, A.A., “Recent Magnesium Alloy Development for Elevated Temperature Applications”. International Materials Reviews, 49, 13–30, 2004.
  • [6] TALTAVULL, C., RODRIGO, P., TORRES, B., LOPEZ, A.J., RAMS, J., “Dry Sliding Wear Behavior of AM50B Magnesium Alloy”, Materials & Design, 56, 549–556, 2014.
  • [7] AVEDESIAN, M.M., BAKER, H., Magnesium and Magnesium Alloys (ASM Specialty Handbook) (1st ed.), ASM International, New York, USA, 194-214, 1999.
  • [8] DOU, J. CHEN, Y. YU, H. CHEN, C., “Research Status of Magnesium Alloys by Micro-Arc Oxidation: A Review”, Surface Engineering, 33, 731-738, 2017.
  • [9] XU, C. FURUKAWA, M., HORITA, Z. LANGDON, T.G., “Severe Plastic Deformation as a Processing Tool for Developing Superplastic Metals”, Journal of Alloys and Compounds, 378, 27–34, 2004.
  • [10] SHANTHI, M., LIM, C.Y.H., LU, L., “Effects of Grain Size on the Wear of Recycled AZ91 Mg”. Tribology International, 40, 335–338, 2007.
  • [11] SELVAN, S.A., RAMANATHAN, S., “Dry Sliding Wear Behavior of As-cast ZE41A Magnesium Alloy”, Materials & Design, 31, 1930–1936, 2010.
  • [12] MEHTA, D.S. MASOOD, S.H. SONG, W.Q., “Investigation of Wear Properties of Magnesium and Aluminum Alloys for Automotive Applications”, Journal of Materials Processing Technology, 155–156, 1526–1531, 2004.
  • [13] HUANG, W. HOU, B. PANG, Y. ZHOU, Z., “Fretting Wear Behaviour of AZ91D and AM60B Magnesium Alloys”, Wear, 260, 1173–1178, 2006.
  • [14] BLAU, P.J. WALUKAS, M., “Sliding Friction and Wear of Magnesium Alloy AZ91D Produced by Two Different Methods”, Tribology International, 33, 573–579, 2000.
  • [15] CHEN, H. ALPAS, A.T., “Sliding Wear Map for the Magnesium Alloy Mg–9Al–0.9Zn (AZ91)”, Wear, 246, 106–116, 2000.
  • [16] AN, J., LI, R.G., LU, Y., CHEN, C.M., XU, Y., CHEN, X., WANG, L.M., “Dry Sliding Wear Behavior of Magnesium Alloys” Wear, 265, 97–104, 2008.
  • [17] YINGBO, Z., SIRONG, Y., YANRU, L., HAIXIA, H., “Friction and Wear Behavior of As-cast Mg–Zn–Y Quasicrystal Materials”, Materials Science and Engineering: A, 472, 59–65, 2008.
  • [18] EL-MORSY, A.W., “Dry Sliding Wear Behavior of Hot Deformed Magnesium AZ61 Alloy as Influenced by the Sliding Conditions”, Materials Science and Engineering: A, 473, 330–335, 2008.
  • [19] CHEN, T.J., MA, Y., LI, B., LI, Y.D., HAO, Y., “Wear Behavior of Thixoformed AZ91D Magnesium alloy: A Comparison with Permanent Mould Cast Alloy”, Materials Science and Engineering: A, 445, 477–485, 2007.
  • [20] ANBUSELVAN, S., RAMANATHAN, S., “Dry Sliding Wear Behavior of hot Extruded ZE41A Magnesium Alloy”, Materials Science and Engineering: A, 527, 1815–1820, 2010.
  • [21] ANBUSELVAN, S., RAMANATHAN, S., “A Comparative Study of the Wear Behaviour of As-cast and hot Extruded ZE41A Magnesium Alloy”, Journal of Alloys and Compounds, 502, 495–502, 2010.
  • [22] LÓPEZ, A.J., RODRIGO, P., TORRES, B., RAMS, J., “Dry Sliding Wear Behaviour of ZE41A Magnesium Alloy”, Wear, 271, 2836–2844, 2011.
  • [23] HABIBNEJAD-KORAYEM, M., MAHMUDI, R., GHASEMI, H.M., POOLE, W.J., “Tribological Behavior of Pure Mg and AZ31 Magnesium Alloy Strengthened by Al2O3 Nano-particles”, Wear, 268, 405–412, 2010.
  • [24] WENBIN, D., HAIYAN, J., XIAOQIN, Z., DEHUI, L., SHOUSHAN, Y., “Microstructure and Mechanical Properties of GTA Surface Modified Composite Layer on Magnesium Alloy AZ31 with SiCp”, Journal of Alloys and Compounds, 429, 233–241, 2007.
  • [25] ASTM G99-95a, Standard Test Method for Wear Testing With a Pin-on-Disk Apparatus. ASTM International, West Conshohocken, 2000.
  • [26] ARCHARD, J.F., “Contact and Rubbing of Flat Surfaces”, Journal of Applied Physics, 24, 981–988, 1953.
  • [27] ISO 6507-1, Metallic Materials—Vickers Hardness Test. Part1: Test Method. ISO, 2005.
  • [28] ZHANG, L., QU, X.H., DUAN, B.H., HE, X.B., QIN, M.L., “Effect of Porosity on Wear Resistance of SiCp/Cu Composites Prepared by Pressureless Infiltration”, Transactions of Nonferrous Metals Society of China, 18, 1076–1082, 2008.
  • [29] CHENA, Y.J., WANG, Q.D., ROVEN, H.J., KARLSEN, M., YU, Y.D., LIU, M.P., HJELEN, J., “Microstructure Evolution in Magnesium Alloy AZ31during Cyclic Extrusion Compression”, Journal of Alloys and Compounds, 462, 192–200, 2008.
  • [30] DING, H., LIU, L., KAMADO, S., DING, W., KOJIMA, Y., “Study of the Microstructure, Texture and Tensile Properties of As-extruded AZ91 Magnesium Alloy”, Journal of Alloys and Compounds, 456, 400–406, 2008.
  • [31] TALTAVULL, C., TORRES, B., LOPEZ, A.J., RAMS, J., “Dry Sliding Wear Behavior of AM60B Magnesium Alloy”, Wear, 301, 615–625, 2013.
  • [32] AUNG, N.N., ZHOU, W., LIM, L.E.N., “Wear Behaviour of AZ91D Alloy at Low Sliding Speeds”, Wear, 265, 780–786, 2008.
  • [33] LIM, S.C., “The Relevance of Wear-Mechanism Maps to Mild-oxidational Wear”, Tribology International, 35, 717–723, 2002.
  • [34] VENKATARAMAN, B., SUNDARARAJAN, G., “The Sliding Wear Behaviour of Al-SiC Particulate Composites—I. Macrobehaviour”, Acta Materialia, 44, 451–460, 1996.
  • [35] MONDAL, A.K., CHANDRA RAO, B.S.S., KUMAR, S., “Wear Behavior of AE42+20% Saffil Mg-MMC”, Tribology International, 40, 290–296, 2007.
  • [36] ZHANG, J., ALPAS, A.T., “Transition between Mild and Severe Wear in Aluminium Alloys”, Acta Materialia, 45, 513–528, 1997.
  • [37] LIM, C.Y.H., LIM, S.C., GUPTA, M., “Wear Behaviour of SiCp-reinforced Magnesium Matrix composites”, Wear, 255, 629–637, 2003.
  • [38] ZAFARI, A., GHASEMI, H.M., MAHMUDI, R., “Tribological Behavior of AZ91D Magnesium Alloy at Elevated Temperatures”, Wear, 292–293, 33–40, 2012.
  • [39] HUANG, W.J., LIN, Q., LIU, C.L., “Tribological Behaviour of AZ71E Alloy at High Temperatures”, Transactions of Nonferrous Metals Society of China, 22, 2057−2065, 2012.
  • [40] HSU, S.M., SHAN, M.C., “Ceramic Wear Maps”, Wear, 200, 154–175, 1996.
Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi-Cover
  • ISSN: 2564-6605
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2017
  • Yayıncı: Niğde Ömer Halisdemir Üniversitesi