CVD VE PECVD TEKNİĞİ KULLANILARAK BAKIR FOLYOLAR ÜZERİNDE GRAFEN NANOYAPILARIN ELDE EDİLMESİ VE KARAKTERİZASYONU

   Bu çalışmada, CH4 gazı kullanılarak bakır folyolar üzerinde grafen ince filmlerin sentezlenmesi amaçlanmıştır. İnce filmlerin elde edilebilmesi için plazma destekli kimyasal buhar biriktirme (PECVD) ve kimyasal buhar biriktirme (CVD) yöntemi kullanılmıştır. Bakır alt-taşlar, standart ön temizlik yapıldıktan sonra kuvars camdan yapılmış reaktöre yerleştirilmiştir. Vakum odasının taban basıncı 5-10 mTorr’a düşürüldükten ve hidrojen gazı ile tavlama işlemi yapıldıktan sonra, CH4 gazı ortama gaz akış kontrol ünitesi yardımıyla gönderilmiştir. PECVD sisteminde; RF güç kaynağı (13,56 MHz), kontrol ünitesi vasıtasıyla aktif hale getirilerek, üretilen enerji ortama gönderilmiştir. İşlem basıncı 100 mTorr, sıcaklık 600 ˚C, RF gücü 50 W ve kaplama süresi ise 20 dakika olarak ayarlanmıştır. CVD tekniğinde ise, RF gücü ortadan kaldırılmış ve büyütme sıcaklığı 1000 ˚C olarak belirlenmiştir. Elde edilen Grafen nanoyapıların karakterizasyonu için Raman, SEM ve TEM analizleri gerçekleştirilmiştir. Raman sonuçlarına göre, CVD yöntemiyle elde edilen yapılar, tek tabaka grafen yapısını doğrulamıştır. Bununla beraber PECVD tekniği ile tek tabaka grafen nanoyapılardan ziyade çok tabakalı yapı elde edildi.
Anahtar Kelimeler:

PECVD, CVD, Grafen, İnce Film

FABRICATION AND CHARACTERIZATION OF GRAPHENE NANOSTRUCTURE ON COPPER FOILS USING CVD AND PECVD TECHNIQUE

    In this study, it was aimed to synthesize graphene thin films on copper foils using CH4 gas. Plasma enhanced chemical vapor deposition (PECVD) and chemical vapor deposition (CVD) method were used to obtain thin films. Copper foils were placed in quartz reactor chamber after standard pre-cleaning. Then, the base pressure of the vacuum chamber was lowered to 5-10 mTorr. The foils was annealed with hydrogen gas and CH4 gas was sent to the chamber by means of gas flow controller. In PECVD system;  RF power supply (13.56 MHz) was activated by the control unit and the plasma was be formed with generated energy. The deposition pressure was set to 100 mTorr,  substrate temperature was 600 ˚C, RF power was 50 W and deposition time was 20 minutes. In the CVD technique, the RF power was eliminated and the deposition temperature was determined as 1000 ˚C. Raman, SEM and TEM analysis were performed for the characterization of the obtained graphene nanostructures. According to the results of Raman, the thin film obtained by the CVD method confirmed the single-layer graphene. However, single-layer graphene could not be obtained by PECVD technique.  

___

  • [1] ALLEN, M. J., TUNG, V. C., KANER, R. B., "Honeycomb carbon: a review of graphene", Chemical Reviews, 110, 132-145, 2009.
  • [2] NETO, A.C., GUINEA, F., PERES, N.M., NOVOSELOV, K.S., GEIM, A.K., "The electronic properties of graphene", Reviews of Modern Physics, 81, 109-116, 2009.
  • [3] CHEN, J.H., JANG, S., XIAO, M., ISHIGAMI, M.S., Fuhrer, "Intrinsic and extrinsic performance limits of graphene devices on SiO 2", Nature Nanotechnology, 3, 206-213, 2006.
  • [4] DU, X., SKACHKO, I., DUERR, F., LUICAN, A., ANDREI E.Y., "Fractional quantum Hall effect and insulating phase of Dirac electrons in graphene", Nature, 462, 192, 2009.
  • [5] NAIR, R.R., BLAKE, P., GRIGORENKO, A.N., NOVOSELOV, K.S., BOOTH, T.J., STAUBER, T., PERES, N.M., GEIM, A.K., "Fine structure constant defines visual transparency of graphene", Science, 320, 1308-1308, 2008.
  • [6] BHUYAN, M. S. A., UDDIN, M. N., ISLAM, M. M., BIPASHA, F. A., HOSSAIN, S. S., "Synthesis of graphene ", International Nano Letters, 6, 65-83, 2016.
  • [7] NOVOSELOV, K. S., GEIM, A. K., MOROZOV, S. V., JIANG, D., ZHANG, Y., DUBONOS, S. V., GRIGORIEVA, I. V., FIRSOV, A. A., "Electric field effect in atomically thin carbon films", Science, 306, 666–669, 2004.
  • [8] LEE, H. C., LIU, W. W., CHAI, S. P., MOHAMED, A. R., AZIZ, A., KHE, C. S., HIDAYAH, N. M. S., HASHIM, U., "Review of the synthesis, transfer, characterization and growth mechanisms of single and multilayer graphene", RSC Advances, 7, 15644-15693, 2017.
  • [9] LI, X., CAI, W., AN, J., KIM, S., NAH, J., YANG, D.,PINER, R., VELAMAKANNI, A., JUNG, I., TUTUC, E., "Large-area synthesis of high-quality and uniform graphene films on copper foils", Science, 324, 1312-1314, 2009.
  • [10] LOGINOVA, E., BARTELT, N., FEIBELMAN, P., MCCARTY, K., "Factors influencing graphene growth on metal surfaces", New Journal of Physics, 11, 063046, 2009.
  • [11] LOSURDO, M., GIANGREGORIO, M.M., CAPEZZUTO, P., BRUNO, G., "Graphene CVD growth on copper and nickel: role of hydrogen in kinetics and structure", Physical Chemistry Chemical Physics, 13, 20836-20843, 2011.
  • [12] CHEN, H., ZHU, W., ZHANG, Z., "Contrasting behavior of carbon nucleation in the initial stages of graphene epitaxial growth on stepped metal surfaces", Physical Review Letters, 104, 186101, 2010.
  • [13] WANG, S., QIAO, L., ZHAO, C., ZHANG, X., CHEN, J., TIAN, H., ZHENG, W., HAN, Z., "A growth mechanism for graphene deposited on polycrystalline Co film by plasma enhanced chemical vapor deposition", New Journal of Chemistry, 37, 1616-1622, 2013.
  • [14] KIM, J., ISHIHARA, M., KOGA, Y., TSUGAWA, K., HASEGAWA, M., IJIMA, S., "Low-temperature synthesis of large-area graphene-based transparent conductive films using surface wave plasma chemical vapor deposition", Applied Physics Letters, 98, 091502, 2011.
  • [15] KATO, T., HATAKEYAMA, R., "Direct growth of doping-density-controlled hexagonal graphene on SiO2 substrate by rapid-heating plasma CVD", Acs Nano, 6, 8508-8515, 2012.
  • [16] KIM, Y.S., LEE, J.H., KIM, Y.D., JERNG, S.K., JOO, K., KIM, E., JUNG, J., YOON, E., PARK, Y.D., SEO, S., "Methane as an effective hydrogen source for single-layer graphene synthesis on Cu foil by plasma enhanced chemical vapor deposition", Nanoscale, 5, 1221-1226, 2013.
  • [17] PEKDEMIR, S., ONSES, M.S., HANCER, M., "Low temperature growth of graphene using inductively-coupled plasma chemical vapor deposition", Surface and Coatings Technology, 309, 814-819, 2017.
  • [18] COSTA, S.D., RIGHI, A., FANTINI, C., HAO, Y., MAGNUSON, C., COLOMBO, L., RUOFF, R.S., PIMENTA, M.A., "Resonant Raman spectroscopy of graphene grown on copper substrates", Solid State Communications, 152, 1317-1320, 2012.
  • [19] KALITA, G., WAKITA, K., UMENO, M., "Monolayer graphene from a green solid precursor", Physica E: Low-dimensional Systems and Nanostructures, 43, 1490-1493, 2011.
  • [20] VAN KHAI, T., KWAK, D. S., KWON, Y. J., CHO, H. Y., HUAN, T. N., CHUNG, H., HAM, H., LEE, C., VAN DAN, N., NGO, T. T., KIM, H. W., "Direct production of highly conductive graphene with a low oxygen content by a microwave-assisted solvothermal method", Chemical Engineering Journal, 232, 346-355, 2013.
  • [21] LISI, N., BUONOCORE, F., DIKONIMOS, T., LEONI, E., FAGGIO, G., MESSINA, G., MORANDI, V., ORTOLANI, L., CAPASSO, A., "Rapid and highly efficient growth of graphene on copper by chemical vapor deposition of ethanol", Thin Solid Films, 571, 139-144, 2014.
Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi-Cover
  • ISSN: 2564-6605
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2017
  • Yayıncı: Niğde Ömer Halisdemir Üniversitesi