Konutlarda hedeflenen aydınlık düzeyine göre gereken pencere cam alanının belirlenmesi

Kapalı mekânların aydınlatılmasında olabildiğince günışığından yararlanılması insanların psikolojik ve fizyolojik olarak kendilerini iyi hissetmesi ve lamba ışığı ile aydınlatmada tüketilecek enerjiden artırım sağlanması açısından büyük önem taşır. Yapılarda günışığına yönelik Avrupa standardı EN 17037’de iç mekânlarda günışığının değerlendirilmesi günışığının sağlanması, dış ortamla görsel bağlantı, güneşlenme ve kamaşmadan korunma başlıkları altında yapılmaktadır. Belirtilen her ölçüt için “en az, orta ve yüksek” olmak üzere üç ayrı derece tanımlanmıştır. Bu çalışmada konutlarda günışığının sağlanması ölçütü söz konusu standart uyarınca incelenmiştir. Bu bağlamda 1336 adet hacim Diva-for-Rhino programında modellenmiş ve ≥ 300 lx, ≥ 500 lx, ≥ 750 lx aydınlıkları sağlayacak cam alanları saptanmıştır. Ele alınan hacimler geometrik biçim, boyut, pencere duvarı sayısı, pencere konumu, parapet yüksekliği ve yön açısından farklılık göstermiştir. Hedeflenen aydınlıkların yıl boyunca gündüz saatlerinin yarısında sağlanabilirliği günışığı otonomisi yöntemiyle hesaplanmıştır. Hesaplamalarda İstanbul iline ait iklimsel veriler kullanılmıştır. Ulaşılan sonuçların kapsamlı analizi yapılmıştır. Hedef aydınlığı en küçük cam alanı ile sağlayan yönün en olumlu olduğu kabulüyle yönler olumludan olumsuza sıralanmıştır. Bu sıralama duvara ortalanmış tek pencereli tüm hacimlerde aynı çıkmış, ancak iki duvarında birer penceresi olan hacimlerde ve pencerenin ortalanmadığı koşullarda hacim geometrisine göre değişmiştir. Döşeme alanları eşit, geometrisi farklı hacimlerin karşılaştırılmasında aynı nicelikteki aydınlığı sağlamak üzere gereken cam alanı bir pencere durumunda dikdörtgen hacimlerde, iki pencere durumunda ise temelde kare hacimlerde daha küçük çıkmıştır. Çalışma kapsamında dikkate alınan çok sayıda değişkene bağlı ulaşılan sonuçlardan mimari tasarımın çeşitli evrelerinde yararlanılması olanaklıdır.

Determination of the required window glazing area based on the targeted illuminance in residences

The European standard EN 17037 for daylight in buildings defines metrics for evaluating the daylight conditions in interior spaces under the headings of daylight provision, assessment for the view out, exposure to sunlight, and protection from glare. There are three levels of recommendation for each specified criterion: minimum, medium, and high. The proposed methods for assessing daylight provision are based on the use of climatic data. So far, no study has been found that examines the glazing area according to the new CEN standard with regard to various parameters such as room shape and size, number of window walls, window position, and direction. The aim of this study is to determine the required glazing area according to the targeted illuminance by considering various options related to the parameters affecting the level of illuminance and to supply data that can be used in residential window design. For this purpose, 1336 residential rooms have been modelled using Diva-for-Rhino software and glazing areas are determined that provide the three levels of illuminance specified in the mentioned standard. The availability of the targeted illuminance levels for half of the daylight hours was calculated using the daylight autonomy method. Climate data for Istanbul were used in the calculations. The effects of obstructions that may be outside the building are excluded from the scope of the study. Some of the factors that determine daylight illuminance have been kept constant. The targeted illuminance level, the shape and size of the room, the number of window walls, window position, sill height, and direction were determined as modifiable factors. Taking into account the dimensions of ordinary living rooms, bedrooms, and children’s rooms in residences, 9 square (10 m2-50 m2) and 14 rectangular (10.8 m2-50.4 m2) rooms were handled. The ratio between length and width was 1.2, 1.4, 1.6 and 1.8 for rectangular rooms. The conditions of a centred window on one wall and a centred window on each of two adjacent walls were examined. In addition, the cases where the windows are placed off-centred either to the right or left direction were also investigated. The study also includes the comparison of windows with and without a sill. Four cardinal and four ordinal directions were considered. The number of directions considered was sixteen for rectangular rooms with windows on two adjacent walls. Glazing areas were determined that ensure ≥300 lx, ≥500 lx, ≥750 lx illuminance levels in modelled rooms. The illuminance levels ≥500 lx and ≥750 lx could not be achieved in all rooms. Targeted illuminances were attained in 1950 rooms. A comprehensive analysis of the results obtained was carried out. The directions have been ordered from positive to negative, assuming that the direction that provides the target illuminance with the smallest glazing area is the most positive. This order was the same for rooms with a single centred window on one wall but changed for other conditions according to the room geometry. Rooms with equal floor areas but different geometry were compared. It was found that the required glazing area to provide the same illuminance is smaller in rectangular rooms in the case of one window and in square rooms in the case of two windows. The geometric properties of the room and the orientation are decisive for the number, size and position of the windows that provide the desired daylight illuminance. In window design, it is necessary to consider the climatic data of the site where the building is located. This study, which takes into account many variables, presents data that can be used in architectural design. These data can be used in many ways such as positioning the rooms in a building, deciding on the room geometry and size, determining the number and position of windows according to the location of the room in the building and the direction.

___

  • Bellia, L., Cesarano, A., Minichiello, F., and Sibilio, S. (2000). De-Light: A software tool for the evaluation of direct daylighting illuminances both indoors and outdoors-comparison with Superlite 2.0 and Lumen Micro 7.1. Building and Environment, 35(4), 281- 295. https://doi.org/10.1016/S0360-1323(99)00026- 8
  • Bournas, I. (2020). Daylight compliance of residential spaces: Comparison of different performance criteria and association with room geometry and urban density. Building and Environment, 185. https://doi. org/10.1016/j.buildenv.2020.107276
  • British Standards Institution. (2008). Lighting for buildings- part 2: Code of practice for daylighting (BS Standart No. 8206-2:2008). Chartered Institution of Building Services Engineers. (1999). Daylighting and window design - Lighting guide (CIBSE Standart No. LG10: 1999).
  • Darula, S., Kittler, R., and Malíková, M. (2014). EN criteria for evaluation of daylight in interiors. Advanced Materials Research, 899, 307-314. https://doi. org/10.4028/www.scientific.net/AMR.899.307
  • Darula, S., and Kittler, R. (2018). The window size in residential house facades after the current and new CEN standard. Proceedings of the IEEE. VII Lighting Conference of the Visegrad Countries (Lumen V4), Trebic, Czech Republic, 1-5.
  • De Chiara, J., Panero, J., and Zelnik, M. (1992). Time-saver standards for interior design and space planning. McGraw-Hill.
  • Deutsche Gesetzliche Unfallversicherung. (2009). Tageslicht am Arbeitsplatz leistungsfordernd und gesund. DGUV.
  • European Committee for Standardization. (2018). Daylight in buildings (CEN Standard No. EN 17037:2018). Illuminating Engineering Society. (2013). Recommended practice for daylighting buildings (IES Standard No. RP-5-13).
  • International Organization for Standardization. (2008). Building environment design-energy efficiency- terminology (ISO Standard No. 16818:2008).
  • International Commission on Illumination. (2014). CIE Standard general sky guide (CIE Standard No. 215:2014).
  • Jakubiec, J. A., and Reinhart, C. F. (2011). Diva 2.0: integrating daylight and thermal simulations using Rhinoceros 3d, Daysim and Energyplus. Proceedings of the 12th Conference of International Building Performance Simulation Association, Sydney, Australia, 2202-2209.
  • Li, D. H. W., Cheung, G. H. W., Cheung, K. L., and Lam, T. N. T. (2010). Determination of vertical daylight illuminance under non-overcast sky conditions. Building and Environment, 45 (2), 498-508. https://doi. org/10.1016/j.buildenv.2009.07.008
  • Littlefair, P. (1999). Daylighting and solar control in the building regulations. Building Research Establishment.
  • Markou, M. T., Kambezidis, H. D., Bartzokas, A., Darula, S., and Kittler, R. (2007). Generation of daylight reference years for two European cities with different climate: Athens, Greece and Bratislava, Slovakia. Atmospheric Research, 86(3-4), 315-339.
  • Nabil, A., and Mardaljevic, J. (2005). Useful daylight illuminance: a new paradigm to access daylight in buildings. Lighting Research & Technology, 37(1), 41-59. https://doi.org/10.1191/1365782805li128oa
  • Nabil, A., and Mardaljevic, J. (2006). Useful daylight illuminances: A replacement for daylight factors. Energy and Buildings, 38, 905-913. https://doi. org/10.1016/j.enbuild.2006.03.013
  • Neufert, E. (1983). Yapı tasarımı temel bilgileri. Güven Yayıncılık.
  • Paule, B., Boutillier, J., Pantet, S., and Sutter Y. (2018). A lighting simulation tool for the new European daylighting standard. Proceedings of the 4th Building simulation and Optimization Conference, Cambridge, UK, 32-37.
  • Rasmussen, H. F., and Pedersen, T. S. (2019). An industry perspective on building simulations with solar shading. E3S Web of conferences. https://doi. org/10.1051/e3sconf/201911103048.
  • Reinhart, C. F., Mardaljevic, J., and Rogers, Z. (2006). Dynamic daylight performance metrics for sustainable building design. Leukos, 3(1), 7-31. https://doi. org/10.1582/LEUKOS.2006.03.01.001
  • Reinhart, C. F., Jakubiec, J. A., and Iberra, D. (2013). Definition of a reference office for standardized evaluations of dynamic façade and lighting technologies. Proceedings of the 13th Conference of International Building Performance Simulation Association, Chambery, France, 3645-52.
  • Resmi Gazete. (2017). Çevre ve Şehircilik Bakanlığından: Planlı alanlar imar yönetmeliği (Sayı: 30113).
  • Robinson, A., and Selkowitz, S. (2013). The integrated approach - Tips for daylighting with windows. Lawrence Berkeley National Laboratory, U.S. Department of Energy.
  • Ullah, M. B., and Lin, L. W. (2003). Daylight distribu tion in the living rooms of four types of public housing building in Singapore. Lighting Research and Technology, 35(2), 91-100. https://doi. org/10.1191/1477153503li085oa
  • Uzunoğlu, K., and Özer, H. (2014). Toplu konutların ön tasarım aşamasında değerlendirilmesi. Megaron, 9(3), 167-189. doi: 10.5505/MEGARON.2014.44366
  • Yılmaz, F. Ş. (2016). Proposal of a façade design approach for daylight performance determination in buildings. ITU Journal of the Faculty of Architecture, 13(2), 57-64. doi: 10.5505/itujfa.2016.49140
  • Yılmaz, F. Ş. (2019). Binalarda günışığı performans ölçütlerine güncel bir bakış: EN 17037 standardı ve uygulaması. 10. Ulusal Aydınlatma Sempozyumu, İzmir, Türkiye.
Megaron-Cover
  • ISSN: 1305-5798
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2006
  • Yayıncı: Kare Yayıncılık