Tuz Stresi Altındaki Mısır Bitkisinde (Zea mays L.) Stres Parametreleri Üzerine Ca, Mg ve K’nın Etkileri

Tuz stresi altındaki mısır bitkisinde (Zea mays L.) stres parametreleri üzerine (membran geçirgenliği, nispi su içeriği, prolin, klorofil ve karotenoid miktarları ile yaprak ve köklerde makro elementler) kalsiyum (Ca), potasyum (K) ve magnezyumun (Mg) etkileri araştırılmıştır. Mısır bitkisine tuz ile ilave olarak verilen kalsiyum, magnezyum ve potasyumlu bileşikler membran geçirgenliği ve bağıl su içeriği üzerine iyileştirici etki yapmış, tuzun olumsuz etkilerini kısmen hafifletmiştir. Prolin oranı tuz uygulamasıyla beraber artmıştır. Toplam klorofil ve toplam karotenoid miktarları tuz uygulamasından olumsuz etkilenmiş ancak besin çözeltisine ilave edilen kalsiyum, magnezyum ve potasyumlu bileşikler tuzun olumsuz etkisini kısmen hafifletmiş, kontrol ve tuz grubuna göre iyileştirici etki yapmışlardır. Hasat sonrası, yapraklarda membran geçirgenliği ( %EC ) , bağıl su içeriği ( %RWC ) , prolin, klorofil ve karotenoid miktarları tayin edilmiş, yaprak ve köklerde makro element (N, P, K, Ca, Mg, Na) analizleri yapılmıştır. Ayrıca bazı bitki gelişim parametreleri (sürgün ve kök kuru ağırlığı, bitki boyu, gövde çapı) saptanmıştır

The Effects of Ca, K and Mg on the Stress Parameters of the Maize (Zea mays L. ) Plant under Salinity Stress

The impacts of calcium, magnesium and potassium on the stress parameters (membran permeability, relative water content, prolin, chlorophyll and carotenoid contents and macronutrients in leaves and roots) of maize plant (Zea mays L.) under salt stress were investigated. The compound of Ca, Mg and K given to the maize plant besides the salt addition a positive impact to the rates of %EC and %RWC and partially ameliorated the negative effects of the salt. The rate of proline increased during the salt treatment. The total content of chlorophyll and carotenoid were affected negatively during the salt treatment. However, the additional compounds of Ca, Mg and K in nutrient solution partially ameliorated the negative impact of the salt and led to better impact than the control and salt group. After the harvest, the membran permeability (%EC), relative water content (%RWC), prolin, chlorophyll and carotenoid contents in the leaves and macronutrient contents (N, P, K, Ca, Mg, Na) in leaves and roots were determined. Besides, some plant growth parameters (shoot and root dry matter, stem height, stem diameter) were also determined.

___

  • Azevedo Neto, A.D., Prisco, J.T. and Eneas-Filho, J. 2004. Effects of salt stress on plant growth, stomatal response and solute accumulation of different maize genotypes. Braz. J. Plant Physiol.,16:1,31-38.
  • Barr, H.D. and Weatherley, P,E., 1962. A re- examination of the Relative Turgidity Technique for Estimating Water Deficit in Leaves. Aust. J. Biol. Sci. 15, 413-428.
  • Bates, L.S, Waldren, R.P. and Teare, I.D., 1973. Rapid Determination of Free Proline for Water Stress Studies. Plant Soil. 39, 205–207.
  • Bokhari, U.G. and Trent, J.D., 1985. Proline Concentrations in Water Stressed Grasses. Journal of Range Management 38(1), 37-38.
  • Busch, D.S., 1995. Calcium regulation in plant cell and his role in signalling. Annual Review in Plant Physiology. 46, 95-102.
  • Cramer, G.R., 2002. Calcium-sodium interactions under salinity stress. In: Salinity. Environment- Plants-Molecules. Eds. A. Läuchli and U. Lüttge. Kluwer Acad. Publishers pp:205-228.
  • Çiçek, N. and Çakirlar, H., 2002. The Effect of Salinity on Some Physiol. Parameters in two Maize Cult..Bulg. J.Plant Physıol.,28(1–2),66– 74.
  • Daşgan, H.Y., Aktas, H., Abak, K. ve Cakmak, I., 2002. Determination of Screening Techniques to Salinity Tolerance in Tomatoes and investigation of Genotype Responses, Plant Science 163, 695- 703.
  • Ebert, G., Eberle J., Ali Dinar H., Lüdders P., 2002. Ameliorating effects of Calcium Nitrate on growth, mineral uptake and photosynthesis of NaCl-stressing guava seedlings. Scientia Hortic. 93, 125-135.
  • Ebrahimzadeh H, Meighany F, Rahimian H. 2000. Role of mineral ions in salt tolerance of two wheat (Triticum aestivum L.) cultivars. Pakistan Journal of Botany,32,2, 265-271.
  • Ehret, D.L., Remann, R.E., Harvey, B.L. and Cipywnyk, A., 1990.Salinity-induced Ca defic. in wheat and barley. Plant Soil. 128, 143-151.
  • Essa T.A., 2002. Effect of salinity stress on growth and nutrient composition of three soybean (Glycine max L. Merrill) cultivars. Journal of Agronomy and Crop Science, 188,2: 86-93.
  • Fageria, V.D., 2001. Nutrient interactions in crop plants. J. Of Plant Nutrition, 24:8, 1269-1290.
  • Gadallah, M.A.A., 1999. Effect of proline and glycinebetaine on Vicia faba responses to salt stress. Biologia Plantarum. 42:2, 249-257.
  • Ghoulam, C., Foursy, A. and Fores, K., 2002. Effects of Salt Stress on Growth Inorganic ions and Proline Accumulation in Relation to Osmotic Adjustment in Five Sugar Beet Cultivars, Enviromental and Exp. Botany, 47 : 39-50.
  • Hasegawa, P.P. and Bressan, R.A., 2000. Plant cellular and mol. res. to high salinity. Annu.Rev.Plant Physiol. Plant Mol.Biol.51: 463-499.
  • Hothem S.D., Marley K.A. and Larson R.A. 2003. Photochemistry in Hoagland’s nutrient solution. Journal of Plant Nutrition. 26,4, 845–854.
  • Irshad, M., Yamamoto, S., Eneji, A.E., Endo, T. and Hona, T., 2002. Urea and Manure Effect on Growth and Mineral Contents of Maize Under Saline Conditions, Journal of Plant Nutrition, 25(1): 189- 200.
  • Kacar, B., 1972. Toprağın ve Bitkinin Kimyasal Analizleri , Ankara Üniv. Ziraat Fak. Yayınları No: 53 , A.Ü. Basımevi, Ankara.
  • Katerji, N., Van, Hoorn, J.W., Hamdy, A., Mastrorilli, M. and Mou Karzel, E., 1997. Osmotic adjustment of sugarbeets in response to soil salinity and its influence on stomatal conductance, growth and yield. Agricul. Water Manage., 34, 57–69.
  • Kaya C., Higgs D. and Kirnak H., 2001. The effects of high salinity and supplementary phosphorus and potassium on physiology and nutrition development of spinach. Bulg. J. Plant Physiol. 27(3–4), 47–59.
  • Kaya, C. and Higgs, D., 2002. Calcium Nitrate as a Remedy for Salt-Stressed Cucumber Plants. Journal of Plant Nutrition, 25(4), 861–871.
  • Kaya, C. and Higgs, D., 2003. Supplementary KNO3 Improves Salt Tolerance in Bell Pepper Plants, J. of Plant Nutr. 26,7, 1367–1382.
  • Lacerda C.F., Cambraiab J., Olivab M.A. and Ruiz H.A., 2002. Changes in growth and in solute concentrations in sorghum leaves and roots during salt stress recovery. Environmental and Experimental Botany 54, 69–76
  • Lutts, S., Kinet, J.M. and Bouharmont, J., 1996. NaCl- induced Senescence in Leaves of Rice Cultivars Differing in Salinity Resistance. Ann. Bot. 78, 389-398.
  • Munns, R., 2002. Comparative Physiology of Salt and Water Stress, Plant, Cell & Environment, 25:2, 239.
  • Orcutt, D.M. and Nilsen, E.T., 1996. The physiology of plants under stres. Soil and biotic factors. pp: 177-237, John Wiley&Sons, inc. NY.
  • Özdemir, F., Bor, M., Demiral, T. and Turkan, I., 2004. Effects of 24-epibrassinolide on seed germination, seedling growth, lipid peroxidation, proline content and antioxidative system of rice under salinity stres. Plant Growth Regulation 42: 203–211.
  • Shannon, M.C., 1997. Adaptation of Plants to Salinity.Advances in Agronomy vol:60.
  • Srivastava, T.P., Gupta, S.C., Lal, P., Muralia, P.N. and Kumar, A., 1998. Effect of salt stress on physiological and biochem. parameters of wheat. Ann. Arid Zone. 27, 197-204.
  • Strain, H.H. and Svec, W.A., 1966,Extraction, Separation, Estimation and Isolation of Chlorophylls. In The Chlorophylls, Vernon, L.P. ; Seely, G.R. Acad. Press, N.Y. 21-66.
  • Süzer, S., 2004. Mısır tarımı, Trakya Tarımsal Enstitüsü Yay.
  • http://www.ttae.gov.tr/makaleler/.misirtarimi. htm
  • Taban, S.,Günes,A.,Alparslan, M. ve Özcan H.,1999. Değişik mısır çeşitlerinin tuz stresine duyarlılıkları. Tr. J. of Agric and Forestry, 23 (3):625-633.
Mediterranean Agricultural Sciences-Cover
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1988
  • Yayıncı: Akdeniz Üniversitesi