Sekiz Farklı Mısır Hattında Mısır Kurdu (Ostrinia nubilalis Hub. Lepidoptera:Crambidae) Zararına Karşı Dayanıklılık Mekanizmasının Genetik Analizi

amaçla, ikinci generasyon Mısır kurdu ilk dönem larvaları, bitkilerin anthesis döneminde koçan nodu bölgesinde 150 adet olarak birer hafta arayla aşılanmış ve takriben 2 ay sonra bitkiler, gövde ve koçan sapında meydana gelen tüneller ölçülürek hatların dayanıklılık bakımından genetik potansiyelleri belirlenmiştir. Gövde ve koçan sapındaki zararlanmalara karşı dayanıklılık verileri, GCA nın (General Combining Ability) SCA dan (Specific Combining Ability) daha önemli olduğunu ortaya koymuştur. Gövde tünellerine ait varyasyonun %76.1 ve koçan sapına ait varyasyonun %70.6 sını GCA oluşturmasına rağmen, bazı dayanıklı ve hassas hatlar arasında oluşturalan melezlerin gösterdiği performans, dominant genlerinde dayanıklılık mekanizmasında rol oynayabileceğini göstermiştir. Genel olarak sonuçlar, elde bulunan mısır hatları ile dayanıklılığın tekrarlamalı seleksiyon ile geliştirilebileceğini yolundadır

Genetic Analysis of Resistance to European Corn Borer (Ostrinia nubilalis Hub. Lepidoptera:Crambidae) Damage in Eight Maize Germplasm

The inheritance of resistance to Ostrinia nubilalis (ECB) damage in eight breeding maize lines was studied by Griffing’s diallel analysis (Griffing 1956) under two water regimes. One hundred fifty neonate larvae of second generation of ECB were infested around ear node of maize germplasm and approximately two months later, the potentials of the germplasm were determined by measuring stalk and shank tunneling damage in plants. General combining ability (GCA) was more important than specific combining ability (SCA) in determining resistance to both stalk and shank tunneling. Although mean squares for GCA accounted for 76.1% of the variation for stalk tunneling and 70.6% of the variation for shank tunneling, the performance of some crosses between resistant and susceptible lines indicated some dominant genes may have role in resistance mechanism. In general, the results suggest that resistance may be improved with recurrent selection methods within this germplasm.

___

  • Barry, B.D., and Darrah, L.L., 1991. Effect of research on commercial hybrid maize resistance to European corn borer (Lepidoptera: Pyralidae). J. Econ. Entomol. 84:1053-1059.
  • FAO., 1974. FAO 1974 Production year book. Rome, Italy.
  • Griffing, B., 1956. Concept of general and specific combining ability in relation to diallel crossing systems. Aust. J. Biol. Sci. 9:463-493.
  • Hallauer, A.R., and Miranda, J.B. 1988. Quantitative genetics in maize breeding, 2nd ed. Iowa State University Press. Ames.
  • Kim, K.K., Hallauer, A.R., Guthrie, W.D., Barry, B.D., Lamkey, K.R., and Hong, C.S., 1989. Genetic resistance of tropical corn inbreds to second generation European corn borer (Lepidoptera: Pyralidae). J. Econ. Entomol. 82:1207-1211.
  • Lamb, E.M., Davis, D.W., and Andow, D.A., 1994. Mid-parent heterosis and combining ability of European corn borer resistance in maize. Euphytica. 72:65-72.
  • Mihm, J.A., Peairs, F.B., and Ortega, A., 1978. New procedures for efficient mass production and artificial infestation with lepidopterous pests of maize. CIMMYT Review 138 pp
  • Onukogu, F.A., Guthrie, W.D., Russell, W.A., Reed, G.L., and Robbins, J.C., 1978. Location of genes that condition resistance in maize to sheath-collar feeding by second-generation European corn borer. J. Econ. Entomol. 71:1-4.
  • Sprague, G.F., and Tatum, LA., 1941. General vs. specific combining ability in single crosses of corn. J. Am. Soc. Agron. 34:923-932.
  • Steel, R. G. D., Torrie, J. H., and Dickey, D. A., 1997. Principles and procedures of statistics a biometrical approach, 3nd ed. McGraw-Hill, New York.
  • Yates, F., 1947. Analysis of data from all possible reciprocal crosses between a set of parental lines. Heredity 1:287-301.
Mediterranean Agricultural Sciences-Cover
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1988
  • Yayıncı: Akdeniz Üniversitesi