Bitkisel orijinli olmayan uyarılabilir promotorların bitkilerde kullanımı

Bitki biyoteknolojisinin önemli konularından birisi transgenik bitki teknolojisidir. Transgenik bitki teknolojisinde genellikle transgenin devamlı ekspresyonuna neden olan (constitutive) promotorlar kullanılmaktadır. Bazı gen ürünlerinin sürekli sentezi ise bitkiye zararlı olabilir. Bu nedenle uyarılabilir promotorlar kullanılarak gen ekspresyonunun yeri (doku tipi) ve zamanı belirlenerek transgenin uyardığı negatif etkilerden kaçınılabilir veya etkileri azaltılabilir. Transgen aktivitesinin zamansal ve kantitatif kontrolu için birçok düzenlenebilir ekspresyon sistemi geliştirilmiştir. Genel olarak promotor aktive edici ve promotor durdurucu sistemler bulunmaktadır. Bu düzenlenebilir moleküler anahtarlar virüslerden böceklere kadar değişen organizmalardan elde edilmiş olup, bitkilerde ise kullanılabilirliği birçok araştırmalarla ortaya konulmuştur. Geliştirilen düzenlenebilir sistemler arasında kimyasal olarak uyarılabilenlerin diğerlerine oranla uygulanabilirlik açısından birçok üstünlükleri söz konusudur. Her model avantajlara ve dezavantajlara sahiptir ki, bu çalışmada çeşitli düzenlenebilir modeller özetlenmektedir

Utilization of non-plant based regulatable promoters in plants

Majority of biotechnology research in plants depends heavily on the genetic manipulation of crops. In transgenic plant technology, the gene of interest is mostly expressed in a constitutive manner although this may be harmful for several applications. Constitutive expression of foreign genes in plants may interfere with physiological processes, compromise development and occasionally be deleterious or even lethal. Currently, there are several inducible expression systems for the temporal, spatial and quantitative control of transgene activity. In general, there are two promoter systems: promoter activation and promoter repression. These molecular switches are derived from viruses, prokaryotes and higher eukaryotes. They have also been shown to be usable in plants in many studies. Among these systems chemically inducible ones are more superior than the others in respect to applicability. Each system has its own advantages and disadvantages which were summarized in this review.

___

  • Aoyama T, Chua NH (1997) A glucorticoid-mediated transcriptional induction system in transgenic plants. Plant Journal 11: 605-612.
  • Bates SL, Zhao JZ, Roush RT, Shelton AM (2005) Insect resistance management in GM crops: past present and future. Nature Biotechnology 23: 57–62.
  • Caddick MX, Jepson I, Krause KP, Qu N, Riddell KV, Salter MG, Schuch W, Sonnewald U, Tomsett AB (1997) An ethanol inducible gene switch for plants used to manipulate carbon metabolism. Nature Biotechnology 16: 177-181.
  • Caddick MX, Salter MG, Paine JA, Riddell KV, Jepson I, Greenland AJ, Tomsett AB (1998) An ethanol-inducible gene switch for plants used to manipulate carbon metabolism. Nature Biotechnology 16: 177-181.
  • Chorlett JE, Myatt SC, Thompson AJ (1996) Toxicity symptoms caused by high expression of TetR repressor in tomato (Lycopersicum esculentum Mill. L.) are allevitaed by tetracycline. Plant Cell Environment 19: 447-454.
  • Corrado G, Karali M (2009) Inducible gene expression systems and plant biotechnology. Biotechnology Advances 27: 733-743.
  • Garoosi GA, Salter MG, Caddick MX, Tomsett AB (2004) Characterization of the ethanol-inducible alc gene expression system in tomato. Journal of Experimental Botany 56: 635-1642.
  • Gatz C (1997) Chemical control of gene expression. Annual Review of Plant Physiology and Plant Molecular Biology 48: 89-108.
  • Gatz C, Kaiser A, Wendenburg R (1991) Regulation of a modified CaMV 35S promoter by the Tn10-encoded Tet repressor in transgenic tobacco plants. Molecular and General Genetics 227: 229-237.
  • Gossen M, Bujard H (1992) Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proceedings of the National Academy of Sciences of the United States of America 89: 5547-5551.
  • Granger CL, Cyr RJ (2001) Characterization of the yeast copper- inducible promoter system in Arabidopsis thaliana. Plant Cell Reports 20: 227-234.
  • Higuchi R (1990) Recombinant PCR. In: Innis MA, Gelfand DH, Sninsky JJ (Eds.), PCR Protocols. Academic Press, San Diego, USA, pp. 177-183
  • Hillen W, Berens C (1994) Mechanism underlying expression of Tn10 encoded tetracycline resistance. Annual Review of Microbiology 48: 345-369.
  • Hull AK, Yusibov V, Mett V (2005) Inducible expression in plants by virus-mediated transgene activation. Transgenic Research 14: 407– 416.
  • Kulmberg P, Prange T, Mathieu M, Sequeval D, Scazzochio C, Felenbok B (1991) Correct intron splicing generates a new type of putative zinc-binding domain in a transcriptional activator of A. nidulensis. Federation of European Biochemical Societies Letters 280: 11-16.
  • Lloyd AM, Schena M, Walbot V, Davis RW (1994) Epidermal cell fate determination in Arabidopsis: Patterns defined by a steroid- inducible regulator. Science 266: 436-439.
  • McKenzie M, Mett V, Reynolds PHS, Elizabeth PJ (1998) Controlled cytokinin production in transgenic tobacco using a copper-inducible promoter. Plant Physiology 116: 969-977.
  • McNellis T, Mudget W, Li B, Aoyama K, Horvath T, Chua D, Staskawicz NH (1998) Glucorticoid-inducible expressiom of a bacterial avirulence gene in transgenic Arabidopsis induces hypersensitive cell death. The Plant Journal 14: 247-257.
  • Mett V L, Lochead LP, Reynolds PHS (1993) Copper-controllable gene expression system for whole plants. Proceedings of the National Academy of Sciences of the United States of America 90: 4567- 4571.
  • Moore I, Samalova M, Kurup S (2006) Transactivated and chemically inducible gene expression in plants. Plant Journal 45: 651–83.
  • Padidam M (2003) Chemically regulated gene expression in plants. Current Opinion in Plant Biology 6: 169-77.
  • Padidam M, Gore M, Lily LD, Smirnova O (2003) Chemical-inducible, ecdysone receptor-based gene expression system for plants. Transgenic Research 12: 101-109.
  • Picard D, Schena M, Yamamoto KR (1990) An inducible expression vector for both fission and budding yeast. Gene 86: 257-261.
  • Salter MG, Paine JA, Riddell KV, Jepson I, Greenland AJ, Caddick MX, Tomsett AB (1998) Characterization of the ethanol-inducible alc gene expression system for transgenic plants. Plant Journal 16: 127-132.
  • Schaarschmidt ST, Qu N, Strack D, Sonnewald U, Hause B (2004) Local induction of the alc gene switch in transgenic tobacco plants by acetaldehyde. Plant Cell physiology 45: 1566-77.
  • Schena M, Lloyd AM, Davis RW (1991) A steroid-inducible gene expression system for plant cells. Proceedings of the National Academy of Sciences of the United States of America 88: 10421- 10425.
  • Tang W, Newton RJ (2004) Glucocorticoid-inducible transgene expression in loblolly pine (Pinus taeda L.) cell suspension cultures. Plant Science 166: 1351-1358.
  • Tang W, Luo XY, Samuels V (2004) Regulated gene expression with promoters responding to inducers. Plant Science 166: 827-34.
  • Tavva VS, Dinkins RD, Palli SR, Collins GB (2006) Development of a methoxyfenozide responsive gene switch for applications in plants. Plant Journal 45: 457469.
  • Tavva V S, Palli SR, Dinkins RD, Collins GB (2008) Improvement of a monopartite ecdysone receptor gene switch and demonstration of its utility in regulation of transgene expression in plants. Federation of European Biochemical Societies journal 275: 2161-2176.
  • Vadim LM, Lochhead LP, Reynolds PHS (1993) Copper-controllable gene expression system for whole plants. Proceedings of the National Academy of Sciences of the United States of America 90: 4567-4571.
  • Wang RH, Zhou XF, Wang XZ (2003) Chemically regulated expression systems and their applications in transgenic plants. Transgenic Research 12: 529-540.
  • Weinmann P, Gossen M, Hillen W, Bujard H, Gatz C (1994) A chimeric transactivator allows tetracycline-responsive gene expression in whole plants. Plant Journal 5: 559-569.
  • Wilde RJ, Shufflebottom D, Cooke S, Jasinsca I, Merryweather A, Beri R, Brammar WJ, Bevan M, Schuch W (1992) Control of gene expression in tobacco cells using a bacterial operator-repressor system. European Molecular Biology Organization Journal 11: 1251-1259.
  • You YS, Marella H, Zentella R, Zhou Y, Ulmasov T, Ho THD, Quatrano R (2006) Use of bacterial quorum-sensing components to regulate gene expression in plants. Plant Physiology 140: 1205-212.