Üç boyutlu bir toprakaltı sulama hidrolojisi modelinin duyarlılık analizi

Bu çalışmada, üç boyutlu bir toprakaltı sulama modelinin duyarlılık analizi yapılarak sonuçları sunulmuştur. Düğüm sayısı, van Genuchten toprak hidrolik parametreleri (Ks, α, ve n), boyuna ve enine dispersivite (αL, αT), soğurma dağılım katsayısı (Kd), başlangıç çözünmüş madde konsantrasyonu, su tablası derinliği ve kök su alım parametreleri gibi modelin giriş parametreleri bir baz değere göre belirli oranlarda değiştirilmiş ve bu değişikliğe bağlı olarak elde edilen sonuçlar analiz edilmiştir. Model sonuçlarının van Genuchten toprak hidrolik parametreleri, başlangıç çözünmüş madde konsantrasyonu, su tablası derinliği ve kök su alım parametrelerine karşı duyarlı olduğu belirlenmiştir. Kümülatif çözünmüş madde yükünün αL, ve Kd’deki değişikliklere duyarsız olduğu gözlenirken, toprak profilindeki çözünmüş madde konsantrasyonu dağılımının söz konusu parametrelere karşı duyarlı olduğu gözlenmiştir. Simülasyon sonuçlarının düğüm sayısı ve enine dispersiviteye karşı duyarsız olduğu belirlenmiştir. Sonuçlar, sadece bu model için değil buna benzer model çalışmalarında da kullanıcılar için yararlı olacaktır

Sensitivity analysis of a three-dimensional subsurface irrigation hydrology model

In this study, a sensitivity analysis was performed and presented for a three-dimensional subsurface irrigation hydrology model. Input parameters such as number of nodes, van Genuchten’s soil hydraulic parameters (Ks, α, and n), the longitudinal and transverse dispersivity (αL, αT), the sorption distribution coefficient (Kd), initial solute concentration distribution, water table depth from soil surface and root water uptake parameters were changed by fixed amounts around a base value and the resulting changes in the outputs were analyzed. Results showed that output was sensitive to van Genuchten’s soil hydraulic parameters (Ks, α, and n), initial solute concentration distribution, water table depth and root water uptake parameters. The cumulative solute load was insensitive to the changes in the αL, and Kd, while the solute concentration distribution was quite sensitive to these parameters. The simulated outputs were not sensitive to the changes in the number of nodes and transverse dispersivity coefficient. Results could be used by modelers not only for this model but also for similar models.

___

  • Anderson MP, Woessner, WW (1992) Applied Groundwater Modeling. Academic Press, San Diego.
  • Buyuktas D, Wallender WW (2002) Enhanced subsurface irrigation hydrology model. Journal of Irrigation and Drainage Engineering - ASCE 128: 168-174.
  • Corwin DL, Letey J Jr., Carillo, MLK (1999) Modeling non-point source pollutants in the vadose zone: Back to basics. In: Corwin DL, Loague K, Elsworth TR (Eds), Assessment of Non-Point Source Pollution in the Vadose Zone, Geophysical Monograph 108, American Geophysical Union, Washington, pp.323-342.
  • Corwin DL (1996) GIS application of deterministic solute transport models for regional scale assessment of non-point source pollutants in the vadose zone. In: Corwin DL, Loague K (Eds), Applications of GIS to the Modeling of Non-Point Source Pollutants in the Vadose Zone. SSSA Special Publication Number 48, pp. 69-87.
  • Corwin DL (1995) Sensitivity analysis of a simple layer-equilibrium model for the one-dimensional leaching of solute. Journal of Environmental Science and Health Part A30: 201-238.
  • Feddes RA, Kowalik PJ, Zaradny H (1978) Simulation of Field Water Use and Crop Yield. Simulation Monographs. Pudoc, Wageningen.
  • Ferreira VA, Weeisies GA, Yoder DC, Foster GR, Renard KG (1995) The site and condition specific nature of sensitivity analysis. Journal of Soil and Water Conservation 50: 493-497.
  • Fetter CW (1999) Contaminant Hydrogeology. Prentice Hall, Upper Saddle River, New Jersey.
  • Fipps G, Skaggs RW, Nieber JL (1986) Drain as a boundary condition in finite elements. Water Resources Research 22: 1613-1621.
  • Fipps G, Skaggs RW (1991) Simple methods for predicting flow to drains. Journal of Irrigation and Drainage Engineering ASCE 117: 881-896.
  • Forrer I, Kasteel R, Flury M, Fluhler H (1999) Longitudinal and lateral dispersion in an unsaturated field soil. Water Resources Research 35: 3049-3060.
  • Huyakorn PS, Pinder GF (1983) Computational Methods for Subsurface Flow. Academic press, London.
  • Kamra SK, Singh SR, Rao KVGK (1994) Effect of depth of impervious layer and adsorption on solute transport in tile-drained irrigated soil. Journal of Hydrology 155: 251-264.
  • Simunek J, Huang K, van Genuchten MTh. (1995) The SWMS_3D code for simulating water flow and solute transport in three- dimensional variable-saturated media. USSL/ARS, Report No 139.
  • van Genuchten MTh (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal 44: 892-898.
  • Vimoke BS, Tyra TD, Thiel TJ, Taylor GS (1963) Improvements in construction and use of resistance networks for studying drainage problems. Soil Science Society of America Journal 26: 203-207.
  • Wise WR, Clement TP, Molz FJ (1994) Variably saturated modeling of transient drainage: Sensitivity to soil properties. Journal of Hydrology 161: 91-108.
  • Zheng C, Bennett GD (1995) Applied Contaminant Transport, Theory and Practice. Van Nostrand Reinhold, New York.