MA’RIB BÖLGESİ’NDE (ARABİSTAN YARIMADASI GB’SI) İLK KEŞFEDİLEN MANYEZİTDOLOMİT KUŞAĞININ KÖKENİ, SEDİMANTOLOJİSİ VE MİNERALOJİSİ
Bu makalede, KB Yemen’de, Rub’Al-Khali sektörünün Al-Thanyiah bölgesinde yer alan metamorfik kıvrım kuşağında ilk kez keşfedilen ve tanımlanan yüksek saflık derecesindeki manyezit mineralizasyonu ele alınmıştır. Prekambriyen-Neoproterozoyik (?) yaşlı manyezitli metamorfik kuşağı, genel olarak K-G uzanımlı bir bindirme kuşağı halindedir.Manyezit mineralizasyonu, onlarca km boyunca uzanan (yaklaşık 31 km) karbonat-metamorfik kuşağı içinde keşfedilmiş olup sekiz ayrı stratigrafik seviye ile ilişkilidir. Saf manyezit içeren seviyelerin net kalınlıkları 20 ila 60 metre arasında olup büyük ultrabazik sokulumlar ile kesilen koyu yeşil klorit-şist düzeyleri ile ilişkilidir. Jeokimyasal, mineralojikve petrografik analizler, söz konusu stratigrafik düzeylerdeki manyezit zenginleşmesinin % 78 ile % 99.6 arasında, MgOoranının ise % 35 ile % 48.9 arasında değiştiğini, az miktarda da dolomit ve kalsit bulunduğunu göstermiştir. Bunlarınyanı sıra, eser miktarda talk ve brusit mineralleri de saptanmıştır. Bunlardan, MgCO3 içerikleri %95’in üzerinde olan vekalınlıkları 40 ve 60 metre olan iki adet manyezit yatağının, ekonomik olduğu anlaşılmıştır. Manyezitin kaynağı olarak,ultramafik sokulumlar ile ilişkili amfibolit ve harzburjit gibi kayaçların bölgesel metamorfizma sırasında sokulumuntermal etkisiyle Mg2+ açısından zenginleşen diyajenetik çözeltiler gösterilebilir. Dolomitin manyezite alterasyonu, kalsitya da dolomitin çok fazlı olarak manyezite dönüşümü şeklinde gelişmiştir.
SEDIMENTOLOGY, MINERALOGY AND ORIGIN OF THE FIRST DISCOVER MAGNESITEDOLOMITE BELT IN MA’RIB DISTRICT, SW ARABIAN PENINSULA
Magnesite mineralization of high purity was discovered and described herein for the first time from metamorphosed folded belt from Al-Thanyiah locality in Rub’Al-Khali sector, 360 km east of Sana’a City, northwest Yemen. The magnesite-metamorphic belt, belonging to the Precambrian/Neoproterozoic age? comprises thrust belt, which trends generally N-S direction. Magnesite mineralization was identified in an extended carbonate-metamorphic belt for several tens of kilometers cf. 31 km and occurred in association with 8 stratigraphic units. The thicknesses of pure magnesite bearing units are variable and ranges from 20 to 60 m, associated with dark green chlorite-schist with intersecting huge ultrabasic intrusions. Geochemical, mineralogical and petrographic analyses show that the magnesite concentrations in the stratigraphic units are ranging from 78% up to high purity of 99.6% cf. 35 to 48.9% MgO, with minor dolomite and calcite respectively. Little to rare content of talc and brucite were also recognized. Two thick, productive and high purity magnesite beds, the first is of 40 m thick and the second is 60 m in thickness, which reveals more than 95% MgCO3 and considered to be economic. The suggested origin of the magnesite mineralization is coming from high stress of regional metamorphism associated with ultramafic intrusions cf. amphibolite and harzburgite associated with diagenetic solutions rich in Mg2+, associated with the heat of magma. The alteration of dolomite to magnesite was formed by multiple phases to transform calcite and/or dolomite to magnesite.
___
- Allan, J.R., Wiggins, W.D.1993. Dolomite reservoirs;
geochemical techniques for evaluating origin and
distribution: American Association of Petroleum
Geologists Continuing Education Course Note
Series, 36, 129s.
- Al-Mashaikie, S. Z. 2006. Preliminary Report; Petrography
and geochemistry of Al-Thanyiah magnesitecarbonate belt in Ma’rib District, NW Yemen.
Geological Survey and Mineral Resource Board,
Ministry of Oil, Sana’a, Yemen, 34s.
- Al-Mashaikie, S. Z. 2007. Petrography, geochemistry and
technical report of the Carbonate - Magnesite
rocks belt in Al-Thanyiah region NE YEMEN,
Unpublished Geological Research. Geological
Survey and Mineral Resource Board, Ministry of
Oil, Sana’a, Yemen, 82s.
- Al-Mashaikie, S. Z. 2008. Geochemistry, mineralogy
and industrial evaluation of the first discover of
Magnesite – Carbonate belt rocks, in Yemen. 8th
conference of Mineral resources in the Arabian
Countries, Amman, Jordan, 32s.
- Beydoun, Z.R., As-Sururi, M., El-Nakhal, H., Al-Ganad,
I., Baraba, R., Nani, A., Al-Awah, M. 1998.
International Lexicon of stratigraphy, vol., Asia,
Fascicule 3(10b2), Republic of Yemen. IUGS
publication No. 34, 245p. Sedimentary cover.
Z.geol. Wiss., 26(5/6) 517-529 Berlin.
- Brasier, D. Martin, Allen, A Phillip, Leather, J. 2011.
Chapter 20, The Abu Mahara Group (Ghubrah and
Fiq formations), Jabal Akhdar, Oman. Geological
Society, London, Memoirs 36, 251-262.
- Bucher, M., Frey, M. 1994. Petrogenesis of Metamorphic
Rocks. Springer-Verlag, 318s.
- Davies, G.R. 2004. Hydrothermal (thermobaric)
dolomitization: rock fabric and organic petrology
support for emplacement under conditions
of thermal transients, shear stress, high pore
fluid pressure with abrupt pressure transients,
hydrofracturing, episodic rapid fluid flow, and
instantaneous cementation by saddle dolomite.
In: Davies, G.R., Packard, J., McAuley, R. (Eds.),
Dolomite Seminar and Core Conference. Canadian
Society of Petroleum Geologists, Calgary, 20s.
- Dragastan, O.N., Richter, D.K. 2011. Stromatolite
and calcareous algae of Munder Formation
(Tithonian- -Berriasian) From NW Germany. Acta
Palaeontologica Romanıae 7, 139-168.
- Dulski, P., Morteany, G. 1989. Magnesite formation by CO2
metasomatism during regional metamorphism of
the ultrabasic rocks of the Ochsner serpentinite
(Zillertaler Alpen, Tyrol, Austria). Monograph
Series on Mineral deposits, 28. Borntraeger, BerlinStuttgart, 95–104.
- Fabricius, I.L. 2000. Interpretation of burial history and
rebound from loading experiments and occurrence
of microstylolites in mixed sediments of Caribbean
sites 999 and 1001. In: Leckie, R.M., Sigurdsson,
H., Acton, G.D., Draper, G. (Eds.), Proceedings of
the Ocean Drilling Program, scientific results 165:
College Station, Texas, Ocean Drilling Program,
177–190.
- Franz, G. 1989. Stability of magnesite in carbonate–silicate
assemblages; a review. Monograph Series on
Mineral deposits, 28. Borntraeger, Berlin-Stuttgart,
259–268.
- Geomine Company. 1984-1985. Preliminary Report;
Industrail rocks and minerals in Ma’rib District.
Unpublished report, Geological Survey and Mineral
Resources Board, Romaine 210s.
- Herrero, M.J. Martín-Pérez, A. Ana M. Alonso-Zarza, GilPeña, I. Meléndez, A. Martín-García, R. 2011.
Petrography and geochemistry of the magnesites
and dolostones of the Ediacaran Ibor Group (635
to 542 Ma), Western Spain: Evidences of their
hydrothermal origin. Sedimentary Geology 240,
71-84.
- IUGS, 2009. International Stratigraphic Chart. International
Commision on Stratigraphy. http://www.
stratigraphy.org/2009.
- Johannes, W. 1970. Zur entstehung von magnesitvorkommen.
Neues Jahrbuch für Mineralogie Abhandlungen
113, 274–325.
- Kralik, M., Aharon, P., Schroll, E., Zachmann, D.
1989. Carbon and oxygen isotope systematics
of magnesites: a review. In: Moller, P. (Ed.),
Magnesite, Monograph Series on Mineral deposits,
28. Berlin-Stuttgart, Borntraeger, 197–224.
- Kilias, S.P., Pozo, M., Bustillo, M., Stamatakis, M.G.,
Calvo, J.P. 2006. Origin of the Rubian carbonatehosted magnesite deposit, Galicia, NW Spain:
mineralogical, REE, fluid inclusion and isotope
evidence. Mineralium Deposita 41, 713–733.
- Lugli, S., Torres–Ruiz, J., Garuti, G., Olmedo, F. 2000.
Petrography and geochemistry of the Eugui
magnesite deposit (Western Pyrenees, Spain):
evidence for the development of a peculiar zebra
banding by dolomite replacement. Economic
Geology 95, 1775–1791.
- Lugli, S., Morteani, G., Blamart, D. 2002. Petrographic,
REE, fluid inclusion and stable isotope study
of magnesite from the Upper Triassic Burano
Evaporites (Secchia Valley, northern Apennines):
contributions from sedimentary, hydrothermal and
metasomatic sources. Mineral Deposits 37, 480–
494.
- Machel, H.G., Lonnee, J. 2002. Hydrothermal dolomite;
a product of poor definition and imagination.
Sedimentary Geology 152, 163–171.
- Melezhik, V.A., Fallick, A.E., Medvedev, P.V., Makarikhin,
V.V. 2001. Palaeoproterozoic magnesite:
lithological and isotopic evidence for playa/sabkha
environments. Sedimentology 48, 379–397.
- Melezhik, V.A., Fallick, A.E. 2003. δ13C and δ18O
variations in primary and secondary carbonate
phases: several contrasting examples from
Palaeoproterozoic 13C–rich dolostones. Chemical
Geology 201, 213–228.
- Meister, P., Judith A. Mckenzie, J., Bernascon, S. M., Brack,
P. 2013 Dolomite formation in the shallow seas of
the Alpine Triassic. Sedimentology 60, 270–291.
- Möller, P. 1989. Minor and trace elements in magnesite. In:
Moller, P. (Ed.), Magnesite, Monograph Series on
Mineral deposits, 28. Berlin–Stuttgart, Borntraeger,
173–196.
- Morse, J.V., Mackenzie, F.T. 1990. Geochemistry of
sedimentary carbonates. Developments in
Sedimentology, 48. Elsevier Scientific Publication
Co, New York, 696s.
- Moore, C.H. 2001. Carbonate reservoirs: porosity evolution
and diagenesis in a sequence stratigraphic
framework. Developments in Sedimentology 55,
444.
- Morad, S. 1998. Carbonate cementation in sandstones:
distribution patterns and geochemical evolution.
In: Morad, S. (Ed.), Carbonate Cementation
in Sandstones: Distribution Patterns and
Geochemical Evolution: International Association
of Sedimentologists Special Publication 26, 1–26.
- Morteani, G., Möller, P., Schley, F. 1982. The rare earth
element contents and the origin of the sparry
magnesite mineralizations of Tux-Lanersbach,
Entachen Alm, Spiessnägel, and Hochfilzen,
Austria, and the lacustrine magnesite deposits of
Aiani-Kozani, Greece, and Bela Stena, Yugoslavia.
Economic Geology 77, 617–631.
- Müller, G., Irion, G., Förstner, U. 1972. Formation and
diagenesis of inorganic Ca–Mg carbonates in the
lacustrine environment. Naturwissenschaften 59,
158–164.
- Nash, M. C., Troitzsch, U., Opdyke, B. N., Trafford, J. M.,
Russell, B. D., Kline, D. I. 2011. First discovery
of dolomite and magnesite in living coralline algae
and its geobiological implications. Biogeosciences
8, 3331–3340.
- Perri, E. Manzo, E. Maurice E. Tucker, M.E. 2012.
Multi-scale study of the role of the biofilm in the
formation of minerals and fabrics in calcareous
tufa. Sedimentary Geology 263-264, 16–29.
- Pierson, J. 1981. The control of cathodoluminescence in
dolomite by iron and manganese. Sedimentology
28, 601–610.
- Pohl, W. 1989. Comparative geology of magnesite deposits
and occurrences. In: Moller, P. (Ed.), Magnesite,
Monograph Series on Mineral deposits, 28. BerlinStuttgart, Borntraeger, 1–14.
- Pohl, W. 1990. Genesis of magnesite deposits models and
trends. Geologische Rundchau 79, 291–299.
- Prasannakumar, V. Vikas, C. Kumar, S.N. 2002. Constraints
on the origin of south indian magnesite deposits.
Boletim Paranaense de Geociências 50, 15-20.
- Pueyo, J.J., Inglés, M. 1987. Magnesite formation in recent
playa lakes, Los Monegros,Spain. In: Marshall,
J.D. (Ed.), Diagenesis of Sedimentary Sequences.
Geological Society Special Publication, 119–122.
- Quemeneur, J.M. 1974. Les gisement de magnesite du Pays
Basque: Cadre geoligique et sedimentologique;
genese de la magnesite en milieu sédimentaire.
Diss. Univ. Paris VI, Unpublished, 210s.
- Schroll, E. 2002. Genesis of magnesite deposits in the view
of isotope geochemistry. Boletim Paranaense de
Geociências, UFPR 50, 59–68.
- Sibley, D.F., Gregg, J.M. 1987. Classification of dolomite
rock textures. Journal of Sedimentary Petrology 57,
967–975.
- Siegl,W. 1984. Reflections on the origin of sparrymagnesite
deposits. In:Wauschkuhn, A., Kluth, C.,
Zimmermann, R.A. (Eds.), Syngenesis and
Epigenesis in the Formation of Mineral Deposits.
Springer-Verlag, Berlin, 177–182.
- Smith, L.B., Davies, G.R. 2006. Structurally controlled
hydrothermal alteration of carbonate reservoirs:
introduction. American Associaiton of Petroleum
Geologists Bulletin 90, 1635–1640.
- Souza, R.S., De Ros, L.F., Morad, S. 1995. Dolomite
diagenesis and porosity preservation in lithic
reservoirs, Carmópolis Member, Sergipe–Alagoas
Basin, Northeastern Brazil. American Association
of Petroleum Geologists Bulletin 79, 725–748.
- Spadafora, A. Perri, E. Judith, A. Mckenzie, J.A., Vasconcelos,
C. G. 2010. Microbial biomineralization processes
forming modern Ca:Mg carbonate stromatolites.
Sedimentology 57, 27–40.
- Teedumäe, A., Shogenova, A., Kallaste, T. 2006.
Dolomitization and sedimentary cyclicity of the
Ordovician, Silurian, and Devonian rocks in South
Estonia. Proceedings of the Estonian Academy of
Sciences, Geology 55(1), 67-87
- Tucker, M.E. 1982. Precambrian dolomites: petrography and
isotopic evidence that they differ from Phanerozoic
dolomites. Geology 10, 7–12.
- Tucker, M.E. 1988. Technique in Sedimentology. –
Blackwell scientific publication: 394s.
- Tucker, M.E., Wright, P. 1990. Carbonate Sedimentology.
Blackwell Scientific Publications, London, 482s.
- Veizer, J. 1989. Strontium isotopes in seawater through time.
Annual Review of Earth and Planetary Science 17,
141–167.
- Wacey, D., Wright, D.T., Boyce, A.J. 2007. A stable
isotope study of microbial dolomite formation in
the Coorong Region, South Australia. Chemical
Geology 244, 155–174.
- Winkler, H.G.F. 1988. Petrogenesis of Metamorphic Rocks.
Narosa Publishing House, New Delhi, 348s.
- Zachmann, D.W. 1989. Mg-carbonate deposits in freshwater
environment. In: Moller, P. (Ed.), Magnesite,
Monograph Series on Mineral Deposits, 28. BerlinStuttgart, Borntraeger, 61–94.
- Zachmann, D.W., Johannes, W. 1989. Cryptocrystalline
magnesite. In: Moller, P. (Ed.), Magnesite,
Monograph Series on Mineral Deposits, 28. BerlinStuttgart, Borntraeger, 15–28.