HATILDAĞ (GÖYNÜK/BOLU) SAHASI BİTÜMLÜ KAYAÇLARINDAKİ ELEMENT ZENGİNLEŞMELERİ

Bu çalışmada Bolu ili Göynük ilçesi Hatıldağ sahasında yer alan Kabalar formasyonu bitümlü kayaçlarındaki (bitümlü şeyl, bitümlü kiltaşı ve bitümlü marn) element zenginleşmelerininbelirlenmesi ve ekonomik açıdan maden yatağı olabilirliği araştırılmıştır. Element Analizleri ICP-ES (ICP emission spectrometry) ve ICP-MS (ICP mass spectrometry) teknikleriile yapılmıştır. Kayaçlardaki organik karbon miktarları ise Rock-Eval VI cihazı ile analizedilmiştir. Formasyondan ölçülen Kayalık Dere ÖSKsından alınan 28 adet bitümlü kayaçda yapılan piroliz analizlerinde Corg minumum 0.40 %wt, maksimum 8.25 %wt olup, Corgortalaması 3,6 %wtdır. Tespit edilen ana ve iz elementler dünya çapında anoksik koşullardadepolandığı bilinen Peru Kıyısal Şelfi Sedimanları, Namibya Kıyısal Şelfi Sedimanları, Kaliforniya Körfezi Sedimanları, Akdeniz Sapropelleri, Karadeniz Sapropelleri, Senomaniyen/ Turoniyen (C/T) Demerara Yükselimi Anoksik Sedimanları ve C/T Gubbio Anoksik Sedimanlarına ait ana ve iz element değerleri ile kıyaslanmıştır. İncelenen örneklerde ana ve izelement konsantrasyonlarının ortalama şeyle göre zenginleşmeleri belirlenmiştir. KayalıkDere ÖSKsında ana elementlerden Fe, Mg, Ca ve K, iz elementlerden ise As, Ba, Co, Cu,Ni, Rb, Sr, V, Zn ve Zrnun kıyaslanan havzalara göre daha fazla zenginleştiği görülmüştür.Örneklerimizdeki Ca, Mg ve Ba gibi elemetlerin diğer ortamlardan yüksek çıkması depolanma ortamımızın daha karbonatlı ve suboksik olduğunu göstermektedir.

ELEMENT ENRICHMENTS IN THE HATILDAĞ AREA (GÖYNÜK/BOLU) BITUMINOUS ROCKS

In this study, element enrichments in bituminous rocks (bituminous shale, bituminous clays- tone and bituminous marl) of the Kabalar formation in the Hatıldağ field in Göynük townof the city of Bolu are investigated and their economic potential is discussed with regardto being a mineral deposit. Element analysis was conducted with ICP-ES (ICP emissionspectrometry) and ICP-MS (ICP mass spectrometry) techniques. Organic carbon content inrocks was analyzed with Rock-Eval VI device. In pyrolysis analysis conducted on a total of28 bituminous rocks that are collected from the Kayalık Dere measured stratigraphic section,Corg minimum and maximum are 0.40 %wt and 8.25 %wt, respectively (with average of 3,6%wt). Major and trace elements analyzed were compared with those of Peru ContinentalShelf Sediments, Namibia Continental Shelf Sediments, Gulf of California Sediments, Me- diterranean Sapropels, Black Sea Sapropels, Cenomanian/Turonian (C/T) Demerara RiseAnoxic Sediments and C/T Gubbio Anoxic Sediments which are known to be deposited underanoxic conditions. In the studied samples, enrichment levels of major and trace element con- tents are determined with respect to average shale. Fe, Mg, Ca and K of the major elementsand As, Ba, Co, Cu, Ni, Rb, Sr, V, Zn and Zr of trace elements were found to be more enrichedwith respect to basins compared. Higher concentrations of Ca, Mg and Ba elements in thestudied samples indicate that depositional environment in Hatıldağ is more carbonaceousand suboxic.

___

  • Aliyev, S., Sarı A., Koç, S. 2006. Investigation of Organic Carbon and Iron Group Elements in the Bituminous Rocks. Energy Sources, part A. 28,1461-1472.
  • Bender, M.L., Klinkhammer, G.P., Spencer, D.W. 1977. Manganese in seawater and marine manganese balance. Deep-Sea Res. 24, 799– 812.
  • Böttcher, M.E., Huckriede, H. 1997. First occurence and stable isotope composition of authigenic g-MnS in the central Gotland Deep (Baltic Sea). Mar. Geol. 137, 201–205.
  • Brongersma-Sanders, M., Stephan, K.M., Kwee, T.G., de Bruin, M. 1980. Distribution of minor elements in cores from the Southwest Africa shelf with notes on plankton and fish mortality. Mar. Geol. 37, 91– 132.
  • Bruland, K.W. 1983. Trace elements in sea water. In: Riley, J.P., Chester, R. (Eds.), Chemical Oceanography. Academic Press, London, UK, 398p.
  • Brumsack, H.J. 1989. Geochemistry of recent TOC-rich sediments from the Gulf of California and the Black Sea. Geologische Rundschau, 78, 851-882.
  • Brumsack, H.J. 2006. The trace metal content of recent organic carbon-rich sediments: Implications for Cretaceous black shale formation, Paleogeography, Paleoclimatology, Paleoecology. 232, 344-361.
  • Brumsack, H.J., Gieskes, J.M. 1983. Interstitial water trace- metal chemistry of laminated sediments from the Gulf of California, Mexico. Mar. Chem. 14, 89– 106.
  • Blumenthal, M. 1948. Bolu civarı ile Aşağı Kızılırmak mecrası arasındaki Kuzey Anadolu silsilelerinin jeolojisi: Mineral Research and Exploration Institute Publications B-13, Ankara, Turkey.
  • Büyükutku, A,G., Sarı, A., Karaçam, A. 2005. The reservoir potential of the Eocene carbonates in the Bolu Basin, West of Turkey. Journal of Petroleum Science and Engineering 49, 79-91.
  • Calvert, S., Price, N.B. 1983. Geochemistry of Namibian shelf sediments. In: Suess, E., Thiede, J. (Eds.), Coastal Upwelling. Plenum Press, 337– 369.
  • Calvert, J. G., Lazrus, A. L., Kok, G. L., Heikes, B. G., Walega, J. G., Lind, J. A,, Cantrell, C. A. 1985. Chemical mechanisms of acid generation in the troposphere. Nature 317, 27-35.
  • Calvert, S.E., Pedersen, T.F. 1993. Geochemistry of Recent oxic and anoxic marine sediments: implications for the geological record. Marine Geology 113, 67– 88.
  • Canfield, D.E., Raiswell, R., Bottrell, S. 1992. The reactivity of sedimentary iron minerals toward sulfide. Am. J. Sci. 292, 659– 683.
  • Cruse, A.M., Lyons, T.W. 2004. Trace metal records of regional paleoenvironmental variability in Pennsylvanian (Upper Carboniferous) black shales. Chemical Geology 206, 319–345.
  • Crusius, J., Thomson, J. 2003. Mobility of authigenic rhenium, silver, and selenium during postdepositional oxidation in marine sediments. Geochimica et Cosmochimica Acta 67, 265–273.
  • Hatch, J.R., Leventhal, J.S. 1992, Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, U.S.A. Chemical Geology 99, 65–82.
  • Helz, G.R., Miller, C.V., Charnock, J.M., Mosselmans, J.F.W., Pattrick, R.A.D., Garner, C.D., Vaughan, D.J. 1996. Mechanism of molybdenum removal from the sea and its concentration in black shales: EXAFS evidence. Geochimica et Cosmochimica Acta 60, 3631–3642.
  • Huckriede, H., Meisschner, D. 1996. Origin and environment of manganese-rich sediments within black-shale basins. Geochimica et Cosmochimica Acta 60,1399-1413.
  • Jacobs, L., Emerson, S., Skei, J. 1985. Partitioning and transport of metals across the O2/H2S interface in a permanently anoxic basin: Framvaren Fjord, Norway. Geochimica et Cosmochimica Acta 49, 1433–1444.
  • Kara,G,R., Korkmaz S. 2008. Element contents and organic matter-element relationship of The Tertiary oil shale deposits in Northwest Anatolia, Turkey”, Energy & Fuels, 22, 3164-3173,
  • Lewis, B.L., Luther, G.W. 2000. Processes controlling the distribution and cycling of manganese in the oxygen minimum zone of the Arabian Sea. Deep- Sea Res. Part II. 47, 1541– 1561.
  • Mao, J., Lehmann, B., Du, A., Zhang, G., Ma, D., Wang, Y., Zeng, M., Kerrich, R. 2002, Re-Os dating of polymetallic Ni-Mo-PGE-Au mineralization in Lower Cambrian black shales of South China and its geological signifi cance: Economic Geology and the Bulletin of the Society of Economic Geologists 97, 1051–1061.
  • McKay, J.L., Pedersen, T.F. 2002. Accumulation of redox- sensitive trace metals in continental margin sediments and their paleoapplications. Eos Trans.
  • AGU, 83(4), Ocean Sciences Meet. Suppl. Abstract OS32B-124.
  • Morse, J.W., Luther III, G.W. 1999. Chemical influences on trace metal-sulfide interactions in anoxic sediments. Geochimica et Cosmochimica Acta 63, 3373–3378.
  • Ndung’u, K., Thomas, M.A., Flegal, A.R. 2001. Silver in western equatorial and South Atlantic Ocean. Deep-Sea Res. Part II. 48, 2933–2945.
  • Pratt, L.M., Davis, C.L. 1992. Intertwined fates of metals, sulfur, and organic carbon in black shales. In: Pratt, L.M., Comer, J.B., Brassell, S.C. (Eds.), Geochemistry of Organic Matter in Sediments and Sedimentary Rocks. SEPM Short Course Notes 27,1– 27.
  • Saner, S. 1978 a. Geology and the environments of deposition of Geyve-Osmaneli- Golpazarı-Taraklı area. Journal of the Faculty of Science of Istanbul University, B 43, 63–91.
  • Sarı, A., Sonel, N. 1995. Kayabaşı (Göynük-Bolu) Yöresinin Bitümlü Şeyl İncelemeleri. Türkiye Jeoloj i Bülteni. 2, 39-49.
  • Sarı,A., Aliyev, S.A. 2005. Source Rock Evaluation of The Lacustrine Oil Shale Bearing Deposits, Göynük/ Bolu,Turkey. Energy Sources.27, 271-279.
  • Sarı,A., Aliyev, S.A., Koralay, B. 2007. Source Rock Evaluation of the Eocene Shales in the Gökçesu Area (Bolu/Turkey). Energy Sources, Part A.29,1025-1039.
  • Şeker, H., Kesgin,Y. 1991. Geology and petroleum possibilities of around Nallıhan Mudurnu-Senen- Beypazarı regions. TPAO report no: 2907.
  • Şener, M., Şengüler, I. 1998. Geological, mineralogical and geochemical characteristics of oil shale bearing deposits in the Hatildag oil shale field, Göynük, Turkey. Fuel, 8, 871-880.
  • Şengüler, İ. 2012. Hatıldağ ve Himmetoğlu (Göynük/Bolu) Civarının Stratiğrafisi ve Bitümlü Şeyl Oluşumları. TPJD Bülteni, 24, 7-21,
  • Shaw, T.J., Gieskes, J.M., Jahnke, R.A. 1990. Early diagenesis in differing depositional environments: the response of transitions metals in pore water. Geochimica et Cosmochimica Acta, 54, 1233– 1246.
  • Yanılmaz, E., Taka, M., Şengüler, İ. Sümer, A. 1980. Göynük (Bolu) bitümlü şist sahası hakkında rapor. Maden Tetkik ve Arama Genel Müdürlüğü Rapor No: 6993 (yayımlanmamış), Ankara.