Kolostruma Cevap Veren Rat Yavrularında İntrauterin Büyüme Geriliği İntestinal Otofaji ve Proliferayonu Artırır

Bu çalışmanın amacı, rat modeli üzerinde otofaji, apoptozis ve proliferasyonu incelemek suretiyle intrauterin büyümesi kısıtlanan (IUGR) yavrularda hızlı intestinal büyümeden sorumlu mekanizmaları araştırmaktır. Yirmi adet bir doğum yapmış anneler iki gruba ayrıldı; 1) ad libitum beslenen (Adlib) anneler ve 2) Gestasyonun 10 ile 21. günü arasında yemi %50 kısıtlanan anneler. Böylece normal doğum ağırlığı (NBW) olan yavrular ve IUGR yavrular elde edildi. Doğumda yavru sayısı ve ağırlıkları kaydedildi ve her batında 8 yavru 24 saat süresince yeterli kolostrum alması için annesi ile birlikte tutuldu. Sonrasında, her batından 2 yavruya dekapitasyon uygulandı. Elde edilen sonuçlar yemi kısıtlanan annelerin yavru sayıları ile Adlib grubun yavru sayılarının benzer olduğunu ancak IUGR yavrular ürettiğini gösterdi. Histolojik incelemede IUGR ratların jejunumda azalmış villus yüksekliğine ve yüzey alanına sahip olduğu belirlendi. IUGR yavruların jejunum mukozasında otofagozomların oluştuğu ancak mitokondri ve mikrovillusların etkilenmediği gözlemlendi. IUGR yavruların jejunumlarında WIPI1, MAP1LC3B, Atg13, ULK1 ve Beclin1 mRNA ekspresyonlarının arttığı ve mTOR ekspresyonunun azaldığı belirlendi. Bu hayvanlarda daha düşük Bcl-2 mRNA ekspresyonu, artmış caspase 9 ve orantısal olarak artmış ki67 mRNA ekspresyonu tespit edildi. Elde edilen sonuçlar kolostrum ile besleme sonrası IUGR yavrularda histolojik olarak mitokondrilerde bir değişim olmaksızın jejunumda hasarın oluştuğunu gösterdi. Düşük stres altında gelişmiş intestinal otofaji, intestinal proliferasyonu iyileştirebilir ve bu durum hızlı intestinal büyümeye katkı sağlayabilir

Intrauterine Growth Retardation Enhances Intestinal Autophagy and Proliferation in Rat Pups Responding to Colostrum

This study aimed to investigate responsible mechanisms for rapid intestinal catch-up growth in intrauterine growth restriction (IUGR) pups via analysis of autophagy, apoptosis and proliferation in a rat model. Twenty primiparous dams were assigned into two groups as 1) dams with feed ad libitum (Adlib) and 2) dams with 50% feed restriction from gestational day 10 to 21 to achieve normal birth weight (NBW) and IUGR pups, respectively. Litter size and pup weight were recorded at parturition and 8 pups were kept in each litter to have sufficient colostrum for 24 h. Subsequently, 2 pups from each litter were decapitated. Results indicated that feed restriction dams had similar litter size with rats in Adlib group although produced IUGR pups. Histological analysis indicated that IUGR rats had decreased villus height and surface area in jejunum. There was an accumulation of autophagosomes in jejunal mucosa of IUGR pups, however, the mitochondria and microvilli were unaffected. mRNA expressions of WIPI1, MAP1LC3B, Atg13, ULK1 and Beclin1 were increased, and mTOR expression was decreased in jejunum of IUGR, which also had lower Bcl-2 mRNA expression, increased caspase 9 and relative increased ki67 mRNA expression. Results suggested that after feeding colostrum, IUGR pups had impaired jejunum with unaffected mitochondrial histology. Enhanced intestinal autophagy under low-stress conditions might improve intestinal proliferation, which may be contributed to the rapid intestinal catch-up growth.

___

  • Wu G, Bazer FW, Wallace JM, Spencer TE: Board-invited review: Intrauterine growth retardation: Implications for the animal sciences. J Anim Sci, 84. 2316-2337, 2006. DOI: 10.2527/jas.2006-156
  • Roman A, Desai N, Rochelson B, Gupta M, Solanki M, Xue XY, Chatterjee PK, Metz CN: Maternal magnesium supplementation reduces intrauterine growth restriction and suppresses inflammation in a rat model. Ameri J Obstet Gynecol, 208, 383:e381-387, 2013. DOI: 10.1016/j. ajog.2013.03.001
  • Hamilton BE, Hoyert DL, Martin JA, Strobino DM, Guyer B: Annual summary of vital statistics: 2010-2011. Pediatrics, 131, 548-558, 2013. DOI: 1542/peds.2012-3769
  • Salam RA, Das JK, Bhutta ZA: Impact of intrauterine growth restriction on long-term health. Curr Opin Clinic Nutri Metab Care, 17, 249-254, 2014. DOI: 10.1097/MCO.0000000000000051
  • Wesolowski, SR, Hay WW: Role of placental insufficiency and intrauterine growth restriction on the activation of fetal hepatic glucose production. Mol Cell Endocrinol, 435, 61-68, 2015. DOI: 10.1016/j. mce.2015.12.016
  • Alexandre-Gouabau MC, Courant F, Le Gall G, Moyon T, Darmaun D, Parnet P, Coupe BRR, Antignac JP: Offspring metabolomic response to maternal protein restriction in a rat model of intrauterine growth restriction (IUGR). J Proteome Res, 10, 3292-3302, 2011. DOI: 10.1021/ pr2003193
  • Gupta M, Solanki MH, Chatterjee PK, Xue X, Roman A, Desai N, Rochelson B, Metz CN: Maternal magnesium deficiency in mice leads to maternal metabolic dysfunction and altered lipid metabolism with fetal growth restriction. Mol Med, 20: 332-340. DOI: 10.2119/ molmed.2014.00137
  • Dong L, Zhong X, Ahmad H, Li W, Wang Y, Zhang L, Wang T: Intrauterine growth restriction impairs small intestinal mucosal immunity in neonatal piglets. J Histochem Cytochem, 62, 510-518, 2014. DOI: 1369/0022155414532655
  • Wang T, Huo YJ, Shi F, Xu RJ, Hutz RJ: Effects of intrauterine growth retardation on development of the gastrointestinal tract in neonatal pigs. Biol Neonates, 88, 66-72, 2005. DOI: 10.1159/000084645
  • Furness JB, Kunze WA, Clerc N: Nutrient tasting and signaling mechanisms in the gut II. The intestine as a sensory organ: Neural, endocrine, and immune responses. Am J Physio, 277, G922- G928, 1999.
  • Wang W, Degroote J, Van GC, Van PM, Vergauwen H, Dam TM, Vanrompay D, Peelman LJ, De SS, Michiels J: Intrauterine growth restriction in neonatal piglets affects small intestinal mucosal permeability and mRNA expression of redox-sensitive genes. FASEB J, 2, 863-873, 2016. DOI: 10.1096/fj.15-274779
  • D'Inca R, Che L, Thymann T, Sangild PT, Le Huerou-Luron: Intrauterine growth restriction reduces intestinal structure and modifies the response to colostrum in preterm and term piglets. Livestock Sci, 133, 22, 2010. DOI: 10.1016/j.livsci.2010.06.015
  • Mizushima N, Levine B: Autophagy in mammalian development and differentiation. Nat Cell Biol, 12, 823-830, 2010. DOI: 10.1038/ncb0910-823
  • Yin Z, Pascual C, Klionsky DJ: Autophagy: machinery and regulation. Microb Cell, 3, 457-465, 2008. DOI: 10.15698/mic2016.12.546
  • Call JA, Wilson RJ, Laker RC, Zhang M, Kundu M, Yan Z: Ulk1- mediated autophagy plays an essential role in mitochondrial remodeling and functional regeneration of skeletal muscle. Am J Physiol Cell Physiol, , C724-C732, 2017. DOI: 10.1152/ajpcell.00348.2016
  • Liu Y, Li J, Wang Z, Yu Z, Chen G: Attenuation of early brain injury and learning deficits following experimental subarachnoid hemorrhage secondary to Cystatin C: Possible involvement of the autophagy pathway. Mol Neurobiol, 49, 1043-1054, 2014. DOI: 10.1007/s12035-013-8579-3
  • Zhang X, Yan H, Yuan Y, Gao J, Shen Z, Cheng Y, Shen Y, Wang RR, Wang X, Hu WW: Cerebral ischemia-reperfusion-induced autophagy protects against neuronal injury by mitochondrial clearance. Autophagy, , 1321-1333, 2013. DOI: 10.4161/auto.25132
  • Kuma A, Mizushima N: Physiological role of autophagy as an intracellular recycling system: With an emphasis on nutrient metabolism. Semin Cell Dev Biol, 21, 683-690, 2010. DOI: 10.1016/j. semcdb.2010.03.002
  • Anderson GD, Ahokas RA, Lipshitz J, Dilts Jr P: Effect of maternal dietary restriction during pregnancy on maternal weight gain and fetal birth weight in the rat. J Nutr, 110, 883-890, 1980.
  • Desai M, Gayle D, Babu J, Ross MG: Programmed obesity in intrauterine growth-restricted newborns: Modulation by newborn nutrition. Am J PhysiolRegul Integr Comp Physiol, 288, R91-R96, 2005. DOI: 1152/ajpregu.00340.2004
  • Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL: The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clin Chem, 4, 611-622, 2009. DOI: 10.1373/clinchem.2008.112797
  • Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2-??CT method. Methods, 25, 408, 2001. DOI: 10.1006/meth.2001.1262
  • Zabielski R, Godlewski M, Guilloteau P: Control of development of gastrointestinal system in neonates. J Physiol Pharmacol, 59, 35-54, McMillen IC, Robinson JS: Developmental origins of the metabolic syndrome: Prediction, plasticity, and programming. Physiol Rev, 85, 571- , 2005. DOI: 10.1152/physrev.00053.2003
  • Wesolowski SR, Hay WW: Role of placental insufficiency and intrauterine growth restriction on the activation of fetal hepatic glucose production. Mol Cell Endocrinol, 435, 61-68, 2015. DOI: 10.1016/j. mce.2015.12.016
  • Sarr O, Louveau I, Kalbe C, Metges C, Rehfeldt C, Gondret F: Prenatal exposure to maternal low or high protein diets induces modest changes in the adipose tissue proteome of newborn piglets. J Anim Sci, 88, 1626-1641, 2010. DOI: 10.2527/jas.2009-2542
  • Chu A, Thamotharan S, Ganguly A, Wadehra M, Pellegrini M, Devaskar SU: Gestational food restriction decreases placental IL10 expression and markers of autophagy and ER stress in murine intrauterine growth restriction. Nutr Res, 36, 1055, 2016. DOI: 10.1016/j.nutres. 08.001
  • Woodall S, Breier B, Johnston B, Gluckman P: A model of intrauterine growth retardation caused by chronic maternal undernutrition in the rat: Effects on the somatotrophic axis and postnatal growth. J Endocrinol, , 231-242, 1996. DOI: 10.1677/joe.0.1500231
  • Desai M, Crowther NJ, Lucas A, Hales CN: Organ-selective growth in the offspring of protein-restricted mothers. Br J Nutr, 76, 591-603, 1996. DOI: 10.1079/BJN19960065
  • Meyer AM, Reed JJ, Vonnahme KA, Sotonavarro SA, Reynolds LP, Ford SP, Hess BW, Caton JS: Effects of stage of gestation and nutrient restriction during early to mid-gestation on maternal and fetal visceral organ mass and indices of jejunal growth and vascularity in beef cows. J Anim Sci, 88, 2410-2424, 2010.  DOI: 10.2527/jas.2009-2220
  • Fung CM, White JR, Brown AS, Gong H, Weitkamp JH, Frey MR, Mcelroy SJ: Intrauterine growth restriction alters mouse intestinal architecture during development. PloS One, 11, e0146542, 2016. DOI: 1371/journal.pone.0146542
  • Wang J, Chen L, Li D, Yin Y, Wang X, Li P, Dangott LJ, Hu W, Wu G: Intrauterine growth restriction affects the proteomes of the small intestine, liver, and skeletal muscle in newborn pigs. J Nutr, 138, 60-66, Mizushima N, Yoshimori T, Levine B: Methods in mammalian autophagy research. Cell, 140, 313-326, 2010. DOI: 10.1016/j.cell. 01.028
  • Tsuyuki S, Takabayashi M, Kawazu M, Kudo K, Watanabe A, Nagata Y, Kusama Y, Yoshida K: Detection of WIPI1 mRNA as an indicator of autophagosome formation. Autophagy, 10, 497-513, 2014. DOI: 10.4161/ auto.27419
  • Mercer CA, Kaliappan A, Dennis PB: A novel, human Atg13 binding protein, Atg101, interacts with ULK1 and is essential for macroautophagy. Autophagy, 5, 649-662, 2009. DOI: 10.4161/auto.5.5.8249
  • Kang R, Zeh HJ, Lotze MT, Tang D: The Beclin 1 network regulates autophagy and apoptosis. Cell Death Differ, 18, 571-580, 2011.   DOI: 1038/cdd.2010.191
  • Lee JS, Ha TK, Park JH, Lee GM: Anti-cell death engineering of CHO cells: Co-overexpression of Bcl-2 for apoptosis inhibition, Beclin-1 for autophagy induction. Biotechnol Bioeng, 110, 2195, 2013. DOI: 10.1002/ bit.24879
  • Lin MG, Hurley JH: Structure and function of the ULK1 complex in autophagy. Curr Opin Cell Biol, 39, 61-68, 2016. DOI: 10.1016/j. ceb.2016.02.010
  • Russell RC, Tian Y, Yuan H, Park HW, Chang YY, Kim J, Kim H, Neufeld TP, Dillin A, Guan KL: ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase. Nat Cell Biol, 15, 741-750, DOI: 10.1038/ncb2757
  • Kim J, Kundu M, Viollet B, Guan KL: AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol, 13, 132- , 2011. DOI: 10.1038/ncb2152
  • Yue Z, Jin S, Yang C, Levine AJ, Heintz N: Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. P Natl Acad Sci, 100, 15077-15082, 2003. DOI: 10.1073/ pnas.2436255100
  • Chen M, Guerrero AD, Huang L, Shabier Z, Pan M, Tan TH, Wang J: Caspase-9-induced mitochondrial disruption through cleavage of anti-apoptotic BCL-2 family members. J Biol Chem, 282, 33888-33895, DOI: 10.1074/jbc.M702969200
  • Ashkenazi A, Fairbrother WJ, Leverson JD, Souers AJ: From basic apoptosis discoveries to advanced selective BCL-2 family inhibitors. Nat Rev Drug Discov, 2017. DOI: 10.1038/nrd.2016.253
  • Xia S, Lv J, Gao Q, Li L, Chen N, Wei X, Xiao J, Chen J, Tao J, Sun M, Mao C, Zhang L, Xu Z: Prenatal exposure to hypoxia induced Beclin 1 signaling-mediated renal autophagy and altered renal development in rat fetuses. Reprod Sci, 22, 156-164, 2015. DOI: 10.1177/1933719114536474
  • Zeng JX, Jing YY, Shi RY, Pan XR, Lai FB, Liu WT, Li R, Gao L, Hou XJ, Wu MC, Wei LX: Autophagy regulates biliary differentiation of hepatic progenitor cells through Notch1 signaling pathway. Cell Cycle, 15, 1602- , 2016. DOI: 10.1080/15384101.2016.1181234
  • Van Dussen KL, Carulli AJ, Keeley TM, Patel SR, Puthoff BJ, Magness ST, Tran IT, Maillard I, Siebel C, Kolterud A: Notch signaling modulates proliferation and differentiation of intestinal crypt base columnar stem cells. Development, 139, 488-497, 2012. DOI: 10.1242/ dev.070763
  • Carulli AJ, Keeley TM, Demitrack ES, Chung J, Maillard I, Samuelson LC: Notch receptor regulation of intestinal stem cell homeostasis and crypt regeneration. Dev Biol, 402, 98-108, 2015. DOI: 10.1016/j. ydbio.2015.03.012
  • Kausch I, Lingnau A, Endl E, Sellmann K, Deinert I, Ratliff TL, Jocham D, Sczakiel G, Gerdes J, Böhle A: Antisense treatment against Ki-67 mRNA inhibits proliferation and tumor growth in vitro and in vivo. Int J Cancer, 105, 710-716, 2003. DOI: 10.1002/ijc.11111
  • Bullwinkel J, Baron-Lühr B, Lüdemann A, Wohlenberg C, Gerdes J, Scholzen T: Ki-67 protein is associated with ribosomal RNA transcription in quiescent and proliferating cells. J Cell Physio, 206, 624-635, 2006. DOI: 1002/jcp.20494
Kafkas Üniversitesi Veteriner Fakültesi Dergisi-Cover
  • ISSN: 1300-6045
  • Yayın Aralığı: Yılda 6 Sayı
  • Başlangıç: 1995
  • Yayıncı: Kafkas Üniv. Veteriner Fak.
Sayıdaki Diğer Makaleler

Mısır-Soya Küspesi Diyetine Eklenen Guanidino Asetik Asitin Yumurta Tavuklarının Üretim Performansı, Kan Biyokimyasal Parametreleri ve Üreme Hormonlarına Etkisi

Mehdi Amin 1 AFSHAR, Ali Asghar SADEGHI, ? Farhad 2 FOROUDI, Mohammad CHAMANI, Gita 1 KHAKRAN

Pelet ve Ekstrude Mamaların Köpek Beslemede Kullanılması

Emel GÜRBÜZ, Esad Sami POLAT, Mustafa ULUDAĞ, Şeref İNAL, Mustafa Selçuk ALATAŞ, Oğuzhan KAHRAMAN, Fatma INAL

ZnO Nanopartiküllerinin Bazı Hayvan ve Bitki Protein Kaynaklarının İn Vitro Gaz Üretimi Üzerine Etkisi

Elnaz GHAFFRI CHANZANAGH

Kolostruma Cevap Veren Rat Yavrularında İntrauterin Büyüme Geriliği İntestinal Otofaji ve Proliferayonu Artırır

Lili ZHANG, Xiang 1 ZHONG, Tian 1 WANG, Jintian 1 HE, Daryoush BABAZADEH, Ligen 1 ZHANG, Farman Ali 1 SIYAL, Chao WANG

Tavşanlarda Mürekkepbalığı Kabuğu ve Kan Pulcuğundan Zengin Plazma İle Birlikte Mürekkep Balığı Kaynaklı Hidroksiapatitin Tibial Kemik Hasarının İyileştirilmesindeki Rolü: Deneysel Bir Çalışma

Abdolmohammad 3 KAJBAFZADEH, Pargol Ghavam 2 MOSTAFAVI, ? Nikta 1 MANSOURI, Hamidreza FATTAHIAN, Kimia 1 MANSOURI

Kars Balının Coğrafi İşaretlemesi İçin Melissopalinolojik Analiz

Ömür ÇELEMLİ GENÇAY, ÇİĞDEM ÖZENİRLER, NESRİN ECEM BAYRAM, GOLSHAN ZARE, Kadriye SORKUN

Bulmer Etkisinin Gözardı Edilmesinin Projeni Testinde Genetik ve Ekonomik Sonuçları ve Genomik Seleksiyon Programındaki Olumsuz Etkisinin Araştırılması

Ali 1 MOJTAHEDIN, Jamal SEIFDAVATI, Azadeh 1 BOUSTAN, ? Sara 2 AZIZYAN, Reza SEYEDSHARIFI

Yaşlı Bir Köpekte Şiddetli İdrar Birikmesi ve İdrar Yolu Enfeksiyonu İle Birlikte Unilateral Renal Agenezis

Ryou TANAKA, Akiko UEMURA

Çin'de Kanatlı Hayvanlardan İzole Edilen Pasteurella multocida Sışlarının Moleküler Karakterizasyonu ve tonB Geni Açısından Genetik Analizi

Sishi 1 CHEN, Mengna JIANG1, Yingying 1 SUN, Yifei HE, Zuoyong ZHOU, Fangjun CHENG, Shimei LAN, Zhangcheng LI

Koyun RXRG Geninde SNP İdentifikasyonu ve İkizlik İle İlişkisi

? Zongsheng 1 ZHAO, Heng YANG, Yaosheng YU, Yifan XIE, Manjun 1 ZHAI, Huihui LIANG