Increased Expressions of eNOS and iNOS Correlate with Apoptosis of Diabetic Nephropathy in Streptozotocin-induced Type 1 Diabetic Rats [1] [2]

Diyabetik nefropatilerin patogenezi uzun yıllardır çalışılan fakat hala tam açıklığa kavuşmuş bir konu değildir. Bu çalışma streptozotocin (STZ) ile tetiklenmiş diyabetik sıçanlarda nitrik oksit (NO) üretiminin ve oksidatif stresin (OS) nefropatoloji/nefrodejenerasyonların üzerine olan etkilerinin ve bu faktörlerin apoptozisle bir ilişkisinin olup olmadığının araştırılması için tasarlanmıştır. Bu çalışmada kaspaz 3, kaspaz 9, endotelyal nitrik oksit sentaz (eNOS), indüklenebilir nitrik oksit sentaz (iNOS) ve 8-hydroxy-2\'-deoxyguanosine (8-OHdG) sunumları diyabetik böbrek dokularında araştırıldı. Çalışma sonuçlarında, 8-OHdG (P

Streptozotosin Kaynaklı Tip 1 Diyabetik Sıçanlarda Meydana Gelen Nefropatilerde Artan eNOS ve iNOS Sunumlarının Apoptozisle İlişkilendirilmesi

The present study was designed to evaluate the effects of high level of nitric oxide (NO) production and oxidative stress (OS) on nephropathology and to identify whether NO and OS have any correlation with apoptosis seen in diabetic kidney, elucidating the underlying mechanism(s) involved in the development of nephropathology in streptozotocin (STZ)-induced diabetic rats. Expression levels of caspase 3, caspase 9, endothelial nitric oxide synthase (eNOS), inducible nitric oxide synthase (iNOS), 8-hydroxy-2'-deoxyguanosine (8-OHdG), for the detection of oxidative damage to DNA, were examined in diabetic kidney tissues. Results of the study revealed that the levels of 8-OHdG (P<0.005), eNOS (P<0.005), iNOS (P<0.005), caspase 3 (P<0.005) and caspase 9 (P<0.005) were remarkably higher in diabetic kidney tissues than in controls. In addition, STZ-treated animals showed significant loss of body weight and renal enlargement. It was suggested that apoptosis, OS and increased NO levels are involved in the pathogenesis of diabetic nephropathy. The results also strongly suggested that STZ-induced apoptosis through activation of the intrinsic pathway and that might be most likely related to increased NO levels. Moreover, high NO production was not only mediated by eNOS but also by iNOS. Increased NO production may contribute to hyperfiltration and microalbuminuria in early diabetic nephropathy. Furthermore, expression of 8-OHdG might give an idea of the progress and may be essential as it has a diagnostic significance for this disease. In conclusion, we believe that eNOS and iNOS overexpressions induce diabetic nephropathy by mediating apoptosis in STZ-induced rats.

___

  • Kanwar YS, Wada J, Sun L, Xie P, Wallner EI, Chen S, Chugh S, Danesh FR: Diabetic nephropathy: Mechanisms of renal disease progression. Exp Biol Med, 233, 4-11, 2008. DOI: 10.3181/0705-MR-134
  • Dronavalli S, Duka I, Bakris GL: The pathogenesis of diabetic nephropathy. Nat Clin Pract Endocrinol Metab, 4, 444-452, 2008. DOI: 1038/ncpendmet0894
  • Elmore S: Apoptosis: A review of programmed cell death. Toxicol Pathol, 35, 495-516, 2007. DOI: 10.1080/01926230701320337
  • Rowinsky EK: Targeted induction of apoptosis in cancer management: the emerging role of tumor necrosis factor-related apoptosis-inducing ligand receptor activating agents. J Clin Oncol, 23, 9394-9407, 2005. DOI: 1200/JCO.2005.02.2889
  • Loreto C, Almeida LE, Trevilatto P, Leonardi R: Apoptosis in displaced temporomandibular joint disc with and without reduction: An immunohistochemical study. J Oral Pathol Med, 40, 103-110, 2011. DOI: 10.1111/j.1600-0714.2010.00920.x
  • Caltabiano R, Leonardi R, Musumeci G Bartolonid G, Rusue MC, Almeidaf LE, Loretoc C: Apoptosis in temporomandibular joint disc with internal derangement involves mitochondrialdependent pathways: An in vivo study. Acta Odontol Scand, 71, 577-583, 2013. DOI: 10.3109/ 2012.700060
  • Roos WP, Kaina B: DNA damage-induced cell death by apoptosis. Trends Mol Med, 12, 440-450, 2006. DOI: 10.1016/j.molmed.2006.07.007
  • Verzola D, Bertolotto MB, Villaggio B, Ottonello L, Dallegri F, Salvatore F, Berruti V, Gandolfo MT, Garibotto G, Deferrari G: Oxidative stress mediates apoptotic changes induced by hyperglycemia in human tubular kidney cells. J Am Soc Nephrol, 15, 85-87, 2004. DOI: 1097/01.ASN.0000093370.20008.BC
  • Hibbs JBJ, Taintor RR, Vavrin Z: Macrophage cytotoxicity: role for L-arginine deiminase and imino nitrogen oxidation to nitrite. Science, 235, 476, 1987. DOI: 10.1126/science.2432665
  • Bonfoco E, Krainc D, Ankarcrona M, Nicotera P, Lipton SA: Apoptosis and necrosis: Two distinct events induced, respectively, by mild and intense insults with N-methyl-D-aspartate or nitric oxide/superoxide in cortical cell cultures. Proc Natl Acad Sci USA, 92, 7162-7166, 1995.
  • Dincel GC, Kul O: eNOS and iNOS trigger apoptosis in the brains of sheep and goats naturally infected with the border disease virus. Histol Histopathol, 10, 1233-1242, 2015. DOI: 10.14670/HH-11-621
  • Brookes PS, Salinas EP, Darley-Usmar, Anderson PG: Concentration dependent effects of nitric oxide on mitochondrial permeability transition and cytochrome c release. J Biol Chem, 275, 20474-20479, 2000. DOI: 10.1074/jbc.M001077200
  • Moriya R, Uehara T, Nomura Y: Mechanism of nitric oxideinduced apoptosis in human neuroblastoma SH-SY5Y cells. FEBS Lett, 484, 253- , 2000. DOI: 10.1016/S0014-5793(00)02167-0
  • Dincel GC, Kul O: Increased expressions of ADAMTS-13, neuronal nitric oxide synthase, and neurofilament correlate with severity of neuropathology in border disease virus-infected small ruminants. PLoS One, 10, e0120005, 2015. DOI: 10.1371/journal.pone.0120005
  • Dincel GC, Atmaca HT: Nitric oxide production increases during Toxoplasma gondii encephalitis in mice. Exp Parasitol, 156, 104-112, 2015. DOI: 10.1016/j.exppara.2015.06.009
  • Natalie JT, Hajime H, Bronk S, Gores GJ: Nitric oxide inhibits apoptosis downstream of cytochrome c release by nitrosylating caspase Cancer Res, 62, 1648-1653, 2002.
  • Pender MP, Rist JM: Apoptosis of inflammatory cells in immune control of the nervous system: Role of glia. Glia, 36, 137-144, 2001. DOI: 1002/glia.1103
  • Brown GC. Nitric oxide and neuronal death. Nitric Oxide, 23, 153-165, DOI: 10.1016/j.niox.2010.06.001
  • Baylis C, Harton P, Engels K: Endothelial derived relaxing factor controls renal hemodynamics in the normal rat kidney. J Am Soc Nephrol, , 875-881, 1990.
  • Haynes WG, Noon JP, Walker BR, Webb DJ: Inhibition of nitric oxide synthesis increases blood pressure in healthy humans. J Hypertens, 11, 1380, 1993. DOI: 10.1113/jphysiol.2009.177204
  • Bech JN, Nielsen CB, Pedersen EB: Effects of systemic NO synthesis inhibition on RPF, GFR, Una and vasoactive hormones in healthy humans. Am J Physiol Lung Cell Mol Physiol, 270, 845-851, 1996. DOI: 10.14814/ phy2.12144
  • Corson MA, James NL, Latta SE, Nerem RM, Berk BC, Harrison Classification Tree Method for ... DG: Phosphorylation of endothelial nitric oxide synthasein response to fluid shear stress. Circ Res, 79, 984-991, 1996. DOI: 10.1161/01. RES.79.5.984
  • Kemeny SF, Figueroa DS, Clyne AM: Hypo- and hyperglycemia impairendothelial cell actin alignment and nitricoxide synthase activation in response shear stress. PLoS One, 8, e66176, 2013. DOI: 10.1371/journal. pone.0066176
  • Rouhanizadeh M, Takabe W, Ai L, Yu H, Hsiai T: Monitoring oxidative stress in vascular endothelial cells in response to fluid shear stress: From biochemical analyses to micro- and nanotechnologies. Methods Enzymol, , 111-150, 2008. DOI: 10.1016/S0076-6879(08)01207-X
  • Edirisinghe I, Rahman I: Cigarette smoke-mediated oxidative stress, shear stress, and endothelial dysfunction: Role of VEGFR2. Ann N Y Acad Sci, 1203, 66-72, 2010. DOI: 10.1111/j.1749-6632.2010.05601.x
Kafkas Üniversitesi Veteriner Fakültesi Dergisi-Cover
  • ISSN: 1300-6045
  • Yayın Aralığı: Yılda 6 Sayı
  • Başlangıç: 1995
  • Yayıncı: Kafkas Üniv. Veteriner Fak.
Sayıdaki Diğer Makaleler

The Effect of Deslorelin Acetate in the Treatment of Persistent Urinary Incontinence after Operation of Ectopic Ureter in a Golden Retriever Bitch

Çağrı GÜLTEKİN, Eser ÖZGENCİL, Deniz İNTAŞ SEYREK

Immunohistochemical Distribituon of COX-1, COX-2, and TGF?-1 in the Duodenum of Rats Treated with Capsaicin

BUKET BAKIR, Sevda YILDIZ ELİŞ, EBRU KARADAĞ SARI, HASAN ASKER, Mümtaz NAZLI

Investigation of Salmonella spp. and Listeria monocytogenes in Seafood by Cultural Methods and PCR [1]

Serkan İKİZ, Emek DUMEN, BEREN BAŞARAN KAHRAMAN, GÜLAY MERVE BAYRAKAL, TOLGA KAHRAMAN, SEVGİ ERGİN

Interdental and Interfragmentary Stabilisation (IAIS) of Mandibular Symphysis Separations and Parasymphyseal Fractures in Cats: A New Technique

KÜRŞAT ÖZER, MURAT KARABAĞLI, Gamze KARABAĞLI

MHC-DRB1/DQB1 Genes Polymorphism and Its Association with Resistance to Cystic Echinococcosis in Chinese Merino Sheep

Hong SHEN, Zhitao WANG, Xuhai WANG, Yongsheng ZHANG, Song JIANG, Xin LI, Bin JIA

Candida Mastitis in Dairy Cattle with Molecular Detection of Candida albicans

Ibrahim ELDESOUKY, Nayel MOHAMED, Doaa KHALAF, Akram SALAMA, Ahmed ELSIFY, Rabee OMBARAK, Salah EL-BALLAL, Mohamed EFFAT, Mona SHABRAWY AL

Effect of Tween 80 on Conjugated Linoleic Acid Production by Lactobacillus Strains in Reconstituted Skim Milk Powder [1]

EMRAH TORLAK, SUZAN YALÇIN, FATİH ERCİ

Tumour Necrosis Factor-alpha, Haptoglobin, Serum Amyloid A and Neopterin Levels in Cattle with Lumpy Skin Disease [1][2]

ONUR BAŞBUĞ, Nevin TUZCU, ALPARSLAN COŞKUN, UĞUR AYDOĞDU, Akın YIĞIN, Zahid T. AĞAOĞLU

A Case of Tuberculosis in a Free-living Long-legged Buzzard (Buteo rufinus)

HASAN ÖZEN, MUSA KARAMAN, SERPİL DAĞ, EMİN KARAKURT, YALÇIN AKBULUT

The Effect of Borax on Some Energy Metabolites in Dairy Cows during the Transition Period

Metin ÖĞÜN, OĞUZ MERHAN, ABDULSAMED KÜKÜRT, MUSHAP KURU, MAHMUT KARAPEHLİVAN