Hücrelerinden arındırılmış hayvansal dokuların rejeneratif tedavilerde kullanımı

Çoklu potansiyele sahip adipoz mezenkimal kök hücreler, yağ dokusunda bulunan ve hematopoietik olmayan hücre hatlarıdır. Adipoz mezenkimal kök hücrelerin osteojenik, kondrojenik ve adipojenik fenotipler dâhil birçok soya farklılaşma yetenekleri vardır. Yüksek derecede plastisiteye sahip olmaları ve izolasyon kolaylığından ötürü doku mühendisliği ve rejeneratif tıp uygulamaları için büyük bir potansiyel taşımaktadırlar. Hücreleri, matrikse bağlı çözünür faktörleri ve iskele desteklerini kullanan doku mühendisliği yaklaşımı, fonksiyon gösteremeyen doku ve organların rejenerasyonu, tamiri veya replasmanı için umut vericidir. Üç-boyutlu iskeleler, transplante edilen hücrelerin yapışabileceği bir yüzey ve yeni doku veya organ oluşumuna rehberlik eden fiziksel bir destek olarak görev yaptığından dolayı gereklidir. Özellikle tüm doku ve organların hücrelerinden arındırılmasıyla elde edilen hücre dışı matrikslerin üç-boyutlu iskele olarak doku mühendisliği stratejilerinde kullanılması giderek ilgi görmektedir. Bu bağlamda, insan adipoz mezenkimal kök hücrelerin deselülerize tüm doku veya organlar üzerindeki davranışlarının incelenmesinin rejeneratif tıbba katkı sağlaması beklenmektedir. Bu derleme hayvansal dokuların deselülerizasyonu, elde edilen matriksler üzerinde kök hücrelerin davranışları ve bu matrikslerin insan/hayvan kliniği açısından potansiyel kullanımı hakkında güncel bir bakış açısı sunmaktadır.

The use of decellularized animal tissues in regenerative therapies

Human adipose-derived mesenchymal stem cells are nonhematopoietic cells found in the adipose tissue that have multipotent characteristics. Human adipose-derived mesenchymal stem cells have ability to diferentiate into multiple lineages, including osteogenic, adipogenic and chondrogenic phenotypes. Because of their high degree of plasticity and ease of isolation, they have a great potential for tissue engineering and regenerative medicine applications. Tissue engineering, using cells, soluble matriks-bound factors and supporting scafolds, is a promising approach for regeneration, repairing and replacement of malfunctioning tissues and organs. Three-dimensional scafolds are essential to serve as an adhesive substrate for the transplanted cells and a physical support to guide the formation of new tissues or organs. Particularly, the use of extracellular matrices prepared by decellularized whole tissue and organ as three-dimensional constructs have drawn increasing attention as a tissue engineering strategy. In this context, it is expected that investigating the cellular behaviour of human adipose-derived mesenchymal stem cells on decellularized whole tissue and organ will have a positive impact on regenerative medicine. This review ofers a current perspective about decellularization of animal tissues, stem cells’ behaviors on obtained matrices and potential use of these matrices in human and/or animal clinic.

___

  • 1. Koh CJ, Atala A: Tissue engineering, stem cells, and cloning: Opportunities for regenerative medicine. J Am Soc Nephrol, 15 (5): 1113- 1125, 2004.
  • 2. Inanç B, Arslan YE, Sükran S, Elçin AE, Elçin YM: Periodontal ligament cellular structures engineered with electrospun poly(DL-lactide-co- glycolide) nanofibrous membrane scafolds. J Biomed Mater Res A, 90 (1): 186-195, 2009.
  • 3. Flynn L, Semple JL, Woodhouse KA: Decellularized placental matrices for adipose tissue engineering. J Biomed Mater Res A, 79 (2): 359-369, 2006.
  • 4. Choi JS, Kim BS, Kim JY, Kim JD, Choi YC, Yang HJ, Park K, Lee HY, Cho YW: Decellularized extracellular matrix derived from human adipose tissue as a potential scafold for allograft tissue engineering. J Biomed Mater Res A, 97 (3): 292-299, 2011.
  • 5. Elçin YM, Parmaksız M, Elçin AE, Arslan YE: Decellularization of bovine small ıntestinal submucosa for regenerative medicinal applications. International Patent Application, WIPO NO: PCT/TR2013/000106.
  • 6. He H, Liu X, Peng L, Gao Z, Ye Y, Su Y, Zhao Q, Wang K, Gong Y, He F: Promotion of hepatic diferentiation of bone marrow mesenchymal stem cells on decellularized cell-deposited extracellular matrix. Biomed Res Int, 2013: 406871, 2013. DOI: 10.1155/2013/406871.
  • 7. Badylak SF, Taylor D, Uygun K: Whole-organ tissue engineering: decellularization and recellularization of three-dimensional matrix scafolds. Annu Rev Biomed Eng, 13, 27-53, 2011.
  • 8. Nicpoń J, Marycz K, Grzesiak J, Śmieszek A, Toker ZY: The advantages of autologus adipose derived mesenchymal stem cells (AdMSCs) over the non-steroidal anti-inflammatory drugs (NSAIDs) application for degenerative elbow joint disease treatment in dogs - Twelve cases. Kafkas Univ Vet Fak Derg , 20 (3): 345-350, 2014. DOI: 10.9775/kvfd.2013.10105
  • 9. Ong WK, Sugii S: Adipose-derived stem cells: Fatty potentials for therapy. Int J Biochem Cell Biol, 45 (6): 1083-1086, 2013.
  • 10. Hidalgo-Bastida LA, Cartmell SH: Mesenchymal stem cells, osteoblasts and extracellular matrix proteins: Enhancing cell adhesion and diferentiation for bone tissue engineering. Tissue Eng Part B Rev, 16 (4): 405-412, 2010.
  • 11. Arslan YE, Sezgin Arslan T: Keratin extraction and producing its hydrolysates. national patent application. Turkish Patent Institute No: 2014/02104.
  • 12. Santiago JA, Pogemiller R, Ogle BM: Heterogeneous diferentiation of human mesenchymal stem cells in response to extended culture in extracellular matrices. Tissue Eng Part A, 5 (12): 3911- 3922, 2009.
  • 13. Nagata T, Mitsumori T, Iwaguro H: Adipose tissue-derived stem and regenerative cells for tissue regeneration. J Oral Biosci, 55, 127-131, 2007.
  • 14. Tang M, Chen W, Liu J, Weir MD, Cheng L, Xu HHK: Human induced pluripotent stem cell-derived mesenchymal stem cell seeding on calcium phosphate scafold for bone regeneration. Tissue Eng Part A, 20 (7-8): 1295-1305, 2014.
  • 15. Marycz K, Toker Ny, Śmıeszek A, Nıcpoń J: The morphology and proliferation rate of canine and equine adipose derived mesenchymal stem cells cultured with funixin meglumine- in vitro . Kafkas Univ Vet Fak Derg, 20 (2): 201-207, 2014. DOI: 10.9775/kvfd.2013.9402
  • 16. Tuğlu MI, Özdal-Kurt F, Koca H, Sarac A, Barut T, Kazanç A. The contribution of diferentiated bone marrow stromal stem cell-loaded biomaterial to treatment in critical size defect model in rats. Kafkas Univ Vet Fak Derg , 16 (5): 783-792, 2010.
  • 17. Thibault RA, Baggett LS, Mikos AG, Kasper FK: Osteogenic diferentiation of mesenchymal stem cells on pregenerated extracellular matrix scafolds in the absence of osteogenic cell culture supplements. Tissue Eng Part A, 16 (2): 431-440, 2010.
  • 18. Schubert T, Xhema D, Vériter S, Schubert M, Behets C, Delloye C, Gianello P, Dufrane D: The enhanced performance of bone allografts using osteogenic-diferentiated adipose-derived mesenchymal stem cells. Biomaterials, 32 (34): 8880-8891, 2011.
  • 19. Jones E, Yang X: Mesenchymal stem cells and bone regeneration: Current status Injury, 42: 562- 568, 2011.
  • 20. Overman JR, Helder MN, ten-Bruggenkate CM, Schulten EAJM, Klein-Nulend J, Bakke r AD: Growth factor gene expression profiles of bone morphogenetic protein-2-treated human adipose stem cells seeded on calcium phosphate scafolds in vitro. Biochimie , 95 (12): 2304- 2313, 2013.
  • 21. Lu Z, Roohani-Esfahani SI, Wang G, Zreiqat H: Bone biomimetic microenvironment induces osteogenic diferentiation of adipose tissue- derived mesenchymal stem cells. Nanomedicine , 8 (4): 507-515, 2012.
  • 22. Elçin YM, Arslan YE, Elçin AE, Aktaş Z, Akar AR: Development of macro and/or micro-porous matrix structures for hard and soft tissue engineering applications. National Patent Application, Turkish Patent Institute, No: 2011/01600.
  • 23. Sawkins MJ, Bowen W, Dhadda P, Markides H, Sidney LE, Taylor AJ, Rose FRAJ, Badylak SF, Shakeshef KM, White LJ: Hydrogels derived from demineralized and decellularized bone extracellular matrix. Acta Biomater, 9 (8): 7865-7873, 2013.
  • 24. Krishnamurithy G, Murali MR, Hamdi M, Abbas AA, Raghavendran HB, Kamarul T: Characterization of bovine-derived porous hydroxyapatite scafold and its potential to support osteogenic diferentiation of human bone marrow derived mesenchymal stem cells. Ceramics International, 40(1): 771-777, 2014.
  • 25. Pelttari K, Steck E, Richter W: The use of mesenchymal stem cells for chondrogenesis. Injury, 39S1, 58-65, 2008.
  • 26. Chang CH, Chen CC, Liao CH, Lin FH, Hsu YM, Fang HW: Human acellular cartilage matrix powders as a biological scafold for cartilage tissue engineering with synovium-derived mesenchymal stem cells. J Biomed Mater Res A, 102 (7): 2248-2257, 2014.
  • 27. Rowland JR, Lennon DP, Caplan AI, Guilak F: The effects of crosslinking of scaffolds engineered from cartilage ECM on the chondrogenic diferentiation of MSCs. Biomaterials, 34, 5802-5812, 2013.
  • 28. Yu C, Bianco J, Brown C, Fuetterer L, Watkins JF, Samani A, Flynn LE: Porous decellularized adipose tissue foams for soft tissue regeneration. Biomaterials, 34 (13): 3290-3302, 2013.
  • 29. Wang L, Johnson JA, Zhang Q, Beahm EK: Combining decellularized human adipose tissue extracellular matrix, adipose-derived stem cells for adipose tissue engineering. Acta Biomater, 9 (11): 8921-8931, 2013.
  • 30. Young DA, Choi YS, Engler AJ, Christman KL: Stimulation of adipogenesis of adult adipose-derived stem cells using substrates that mimic the stifness of adipose tissue. Biomaterials, 34 (34): 8581-8, 2013.
  • 31. Franceschi RT, Ge C, Xiao G, Roca H, Jiang D: Transcriptional regulation of osteoblasts. Cells Tissues Organs, 189 (1-4): 144-152, 2009.
  • 32. Satija NK, Sharma D, Afrin F, Tripathi RP, Gangenahalli G: High throughput transcriptome profiling of lithium stimulated human mesenchymal stem cells reveals priming towards osteoblastic lineage. PLoS One , 8 (1): e55769, 2013.
  • 33. James AW: Review of signaling pathways governing MSC osteogenic, adipogenic diferentiation. Scientifica (Cairo), 2013, 684736, 2013.
  • 34. Muruganandan S, Roman AA, Sinal CJ: Adipocyte diferentiation of bone marrow-derived mesenchymal stem cells:cross talk with the osteoblastogenic program. Cell Mol Life Sci, 66 (2): 236-253, 2009.
  • 35. Takada I, Kouzmenko AP, Kato S: Molecular switching of osteo- blastogenesis versus adipogenesis: Implications for targeted therapies. Expert Opin Ther Targets, 13 (5): 593-603, 2009.
  • 36. Cai SX, Liu AR, He HL, Chen QH, Yang Y, Guo FM, Huang YZ, Liu L, Qiu HB: Stable genetic alterations of β-Catenin, ROR2 regulate the Wnt pathway afect the fate of MSCs. J Cell Physiol, 229 (6): 791-800, 2014.
  • 37. Zou L, Zou X, Li H, Mygind T, Zeng Y, Lü N, Bünger C: Molecular mechanism of osteochondroprogenitor fate determination during bone formation. Adv Exp Med Biol, 585, 431-441, 2006.
  • 38. Liao J, Hu N, Zhou N, Lin L, Zhao C, Yi S, Fan T, Bao W, Liang X, Chen H, Xu W, Chen C, Cheng Q, Zeng Y, Si W, Yang Z, Huang W: Sox9 potentiates BMP2-induced chondrogenic diferentiation, inhibits BMP2- induced osteogenic diferentiation. PLoS One , 9 (2): e89025, 2014.
  • 39. Song L, Liu M, Ono N, Bringhurst FR, Kronenberg HM, Guo J: Loss of wnt/β-catenin signaling causes cell fate shift of preosteoblasts from osteoblasts to adipocytes. J Bone Miner Res, 27 (11): 2344-2358, 2012.
  • 40. Zhu F, Friedman MS, Luo W, Woolf P, Hankenson KD: The transcription factor osterix (SP7) regulates BMP6-induced human osteo- blast diferentiation. J Cell Physiol, 227 (6): 2677-2685, 2013.
  • 41. Qi H, Aguiar DJ, Williams SM, La Pean A, Pan W, Verfaillie CM: Identification of genes responsible for osteoblast diferentiation from human mesodermal progenitor cells. Proc Natl Acad Sci USA, 100 (6): 3305- 3310, 2003.
  • 42. Song Y, Ju Y, Morita Y, Xu B, Song G: Surface functionalization of nanoporous alumina with bone morphogenetic protein 2 for inducing osteogenic diferentiation of mesenchymal stem cells. Mater Sci Eng C Mater Biol Appl, 37, 120-126, 2014.
  • 43. Galindo M, Pratap J, Young DW, Hovhannisyan H, Im HJ, Choi JY, Lian JB, Stein JL, Stein GS, van Wijnen AJ: The bone-specific expression of runx2 oscillates during the cell cycle to support a G1-related anti- proliferative function in osteoblasts. J Biol Chem , 280 (21): 20274-20285, 2005.
  • 44. Shui C, Spelsberg TC, Riggs BL, Khosla S: Changes in runx2/cbfa1 expression, activity during osteoblastic diferentiation of human bone marrow stromal cells. J Bone Miner Res, 18 (2): 213-221, 2003.
  • 45. Sinha KM, Zhou X: Genetic, molecular control of osterix in skeletal formation. J Cell Biochem , 114 (5): 975-984, 2013.
  • 46. Lian JB, Jabed A, Zaidi SK, Lengner C, Montecino M, van Wijnen AJ, Stein JL, Stein G: Regulatory controls for osteoblast growth, diferentiation: Role of Runx/Cbfa/AML factors. Crit Rev Eukaryot Gene Expr, 4 (1-2): 1-41, 2004.
  • 47. Marie PJ: Transcription factors controlling osteoblastogenesis. Arch Biochem Biophys, 473 (2): 98-105, 2008.
  • 48. Taşçene N, İşgüder Z, Salmanoğlu B: Osteopontin expression in polarized MDCK cells. Kafkas Univ Vet Fak Derg , 20 (5): 671-674, 2014. DOI: 10.9775/kvfd.2014.10815
  • 49. Si Y, Inoue K, Igarashi K, Kanno J, Imai Y: Autoimmune regulator aire is a novel regulator of chondrocyte diferentiation. Biochem Biophys Res Commun , 437 (4): 579-584, 2013.
  • 50. Michigami T: Current understing on the molecular basis of chondrogenesis. Clin Pediatr Endocrinol, 23 (1): 1-8, 2014.
  • 51. Akiyama H, Lyons JP, Mori-Akiyama Y, Yang X, Zhang R, Zhang Z, Deng JM, Taketo MM, Nakamura T, Behringer RR, McCrea PD, de Crombrugghe B: Interactions between Sox9, beta-catenin control chondrocyte diferentiation. Genes Dev, 18 (9): 1072-1087, 2004.
  • 52. Ning B, Wang P, Pei X, Kang Y, Song J, Wang D, Zhang W, Ma R: Dual function of β-catenin in articular cartilage growth, degeneration at diferent stages of postnatal cartilage development. Int Orthop, 36 (3): 655-664, 2012.
  • 53. Michigami T: Regulatory mechanisms for the development of growth plate cartilage. Cell Mol Life , 70 (22): 4213-4221, 2013.
  • 54. Mackie EJ, Tatarczuch L, Mirams M: The skeleton: a multi- functional complex organ: the growth plate chondrocyte , endochondral ossification. J Endocrinol, 211 (2): 109-121, 2011.
  • 55. Prestwich TC, Macdougald OA: Wnt/beta-catenin signaling in adipogenesis, metabolism. Curr Opin Cell Biol, 19 (6): 612-617, 2007.
  • 56. Cristancho AG Lazar MA: Forming functional fat: A growing understing of adipocyte diferentiation. Nat Rev Mol Cell Biol, 12(11): 722- 734, 2011.
  • 57. Tang QQ, Lane MD: Adipogenesis: From stem cell to adipocyte. Ann Rev Biochem, 81, 715-736, 2012.
  • 58. Teven CM, Liu X, Hu N, Tang N, Kim SH, Huang E, Yang K, Li M, Gao JL, Liu H, Natale RB, Luther G, Luo Q, Wang L, Rames R, Bi Y, Luo J, Luu HH, Haydon RC, Reid RR, He TC: Epigenetic regulation of mesenchymal stem cells:a focus on osteogenic, adipogenic diferentiation. Stem Cells Int, 2011, 201371, 2011.
Kafkas Üniversitesi Veteriner Fakültesi Dergisi-Cover
  • ISSN: 1300-6045
  • Yayın Aralığı: Yılda 6 Sayı
  • Başlangıç: 1995
  • Yayıncı: Kafkas Üniv. Veteriner Fak.
Sayıdaki Diğer Makaleler

Mitotane-induced hypoadrenocorticism in a dog with hyperadrenocorticism

EKREM ÇAĞATAY ÇOLAKOĞLU, ALİ EVREN HAYDARDEDEOĞLU, Hadi ALİHOSSEİNİ, ARİF KURTDEDE

The effects of lichens extracts in the healthy rats and the medical utility of these extracts in the prevention of diabetes-associated multiple organ failures

SUAT ÇOLAK, Fatime GEYİKOĞLU, HASAN TÜRKEZ, Murat BAKIR, Mirkhalil HUSSEINIGOUZDAGANII, Serpil CAN, Gülşen ÇIĞŞAR, Ali ASLAN

Transient glomerular dysfunction in dogs caused by dirofilaria immitis infection

Anton RUSENOV, Lazarin LAZAROV, Zvezdelina KIRKOVA, Anton TONEV, Nikolina RUSENOVA, Francesca DILDA

The effect of orally administrated β-glucan and dietary restriction on faecal microfora in rats

Tülay MUŞ ELAL, Füsun SONAT AK

The presence of Listeria species in corn silage and raw milk produced in Southeast Region of Turkey

HİSAMETTİN DURMAZ, MEHMET AVCI, OSMAN AYGÜN

Effects of various cryoprotective agents on post-thaw drone semen quality

SELİM ALÇAY, BURCU ÜSTÜNER, İBRAHİM ÇAKMAK, Selvinar ÇAKMAK, ZEKARİYA NUR

Seasonal, geographical, age and breed distributions of equine viral arteritis in Iran

Shahin NEJAT, Hassan MOMTAZ, Mehrdad YADEGARI, Shayan NEJAT, Farhad DEHKORDI SAFARPOUR, Faham KHAMESIPOUR

The effects of L-Ergothioneine, N-acetylcystein and cystein on freezing of ram semen

SAVAŞ YILDIZ, YAVUZ ÖZTÜRKLER, UMUT ÇAĞIN ARI, NECDET CANKAT LEHİMCİOĞLU, EMİNE ATAKİŞİ, RECAİ KULAKSIZ

İç Anadolu Bölgesi Konya bölümü folklorunda ruminantların paraziter hastalıkları ve tedavi yöntemleri

AŞKIN YAŞAR, ÇAĞRI ÇAĞLAR SİNMEZ, GÖKHAN ASLIM

Prevalence, hematology and treatment of Balantidium coli among small ruminants in and around Lahore, Pakistan

Mustafa JAMIL, Muhammad IJAZ, Muhammad ALI MUDDASSIR