POLİMER ESASLI KÖPÜK MALZEMELER

Özellikle son yıllarda tüm üretim sektörlerinde hafiflik, ucuzluk ve daha az hammadde tüketimi ön lana çıkmaktadır. Bu özelliklere ilaveten yüksek darbe dayanımı, artan tokluk, artan termal kararlılık, azalan elektriksel ve ısısal yalıtım gibi özellikleri de sağlayabilen polimer esaslı köpük malzemelerin kullanımı hızla artmaktadır. Bu avantajlarından dolayı genellikle endüstride polietilen, poli-üretan, poli-vinil-klorür ve polipropilen gibi polimerler kullanılmaya başlamıştır. Bu çalışmada, henüz Türkiye’de çok gelişme göstermemiş bir konu olan polimer köpük malzemeler tanıtılmıştır. Ayrıca polimer esaslı köpük malzeme üretimindeki amaçlar, köpük yapıcı kimyasal maddeler ve bunların üretim yöntemleri hakkında bilgiler verilmiştir. Bu bilgiler ışığında, istenilen özelliklerde köpük malzeme üretimini gerçekleştirmek için en uygun köpük yapıcı kimyasallar ve üretilecek malzemeye uygun üretim prosesi seçilmelidir. Buna ilave olarak işlem şartları da özellikleri etkileyen ana faktörlerden birisidir.

POLYMER BASED FOAM MATERIALS

All branches of the manufacturing sector demands more lightweight, cheaper and more efficient materials,especially in last decades. Polymer based foams are remarkable with their properties such as high toughness, highimpact resistance, higher thermal stability, lower electrical conductivity and thermal insulation. Because of thisadvantages it is possible to see an increasing in the usage of polyethylene, poly-urethane, polyvinilclorur,polypropylene. In this study, an introduction was made about polymer foam materials which were not attractingattention in Turkey till last few years. Moreover, information was given about aim of the polymer foamproducing, foaming chemical agents, production methods of foams. In the light of this knowledge, most suitablefoaming chemical and producing method should be chosen in order to produce desired foam material.Furthermore, service conditions affect properties in a wide range.

___

  • [1] Andrzej K. B, Omar F,. „Microcellular Injection Molded Wood Fiber–PP Composites: Part I – Effect of Chemical Foaming Agent Content on Cell Morphology and Physico-mechanical Properties”, Journal of Cellular Plastics, 42, 63–76 (January 2006).
  • [2] Saçaklı, M. “Polimer Teknolojisi”, Gazi Kitabevi, ISBN 975–8895–82–6, Ankara.
  • [3] James Lee L., Changchun Z., Xia C., Xiangming H., Jiong S., Guojun X., “Polymer nanocomposite foams”, Composites Science and Technology” 65, 2344–2363 (2005).
  • [4] Djalma Batista D., Leonardo Gondim de Andrade e Silva., “Polyethylene foams cross-linked by electron beam”, Radiation Physics and Chemistry, 76, 11-12, 1696-1697 (2007).
  • [5] Chul B. P., Lewıs K. C., “A Study of Cell Nucleation in the Extrusion of Polypropylene Foams”, Polymer Engineering and Science, .37, No.1, 1–10. (January 1997).
  • [6] Remon Pop İ., “Processing of fine-cell polypropylene foams in compounding-based rotational foam molding”, Degree of master of Applied Science, Department of Mechanical and Industrial Engineering University of Toronto (1999).
  • [7] Adam N., “A study of direct gas injection foam extrusion of polyolefins for a wire coating application”, Degree of Master of Science, University of Massachusetts Lowell. (2006).
  • [8] Chang-Dong Patrick L., “Extrusion Processing of Low-bulk Density, Microcellular, Open-Cell Thermoplastic Foams” Degree of Doctor of Philosophy, Department of Mechanical and Industrial Engineering, University of Toronto (2006).
  • [9] Demir, H., Sipahioglu, M., Balköse, D., Ülkü, S. “Effect of additives on flexible PVC foam formation” Journal of Materials Processing Technology, 195, 1-3, 144-153 (2008).
  • [10] Wentao Z., Jian Y., Lichuan W., Weiming M., Jiasong H., “Heterogeneous nucleation uniformizing cell size distribution in microcellular nanocomposites foams”, Polymer, 47, 7580-7589 (2006).
  • [11] Zhi-Mei X., Xiu-Lei J., Tao L., Guo-Hua H., Ling Z., Zhong-Nan Z., Wei-Kang Y., “Foaming of polypropylene with supercritical carbon dioxide”, J. of Supercritical Fluids, 41, 299–310, (2007).
  • [12] Xue C., Marıe-Claude H., and Pıerre J. C., “Rheological properties of injection molded LDPE and mPE Foams”, Polymer Engineering and Science, 44, No. 11, 2158–2164 (November 2004).
  • [13] Xıangmın H., Kurt W. K., Davıd L. T., and L. James L., “Continuous MicroceIIuIar Polystyrene Foam Extrusion with Supercritical CO2” Polymer Engineering and Science, 42, (17), 2094–2106 (November 2002).
  • [14] Choonghee J., Hani E. N., “Constitutive modeling of HDPE polymer/clay nanocomposite foams” Polymer, 48, 3349–3360 (2007).
  • [15] http://www.basf.com.tr
  • [16] Jiong S. M. S., “Application of nanoparticles in polymeric foams”, Degree of Doctor of Philosophy, Graduate School of the Ohio State University, (2006).
  • [17] Guo, M. C., Heuzey, M. C., Carreau, P.J., “Cell structure and dynamic properties of injection molded polypropylene foams”, Polymer Engineering and Science, 47, (7), 1070–1081 (July 2007).
  • [18] Bledzki, A. K., Faruk, O., “Effects of the chemical foaming agents, injection parameters, and melt-flow index on the microstructure and mechanical properties of microcellular injection-molded wood-fiber/polypropylene composites”, Journal of Applied Polymer Science, 97, 1090–1096 (2005).
  • [19] Chandra, A., Gong, S., Yuan, M., Turng, L. S., “Microstructure and Crystallography in Microcellular Injection-Molded Polyamide-6 Nanocomposite and Neat Resin”, Polymer Engineering and Science, 52-61 (2005).
  • [20] Colton, J. S., “The nucleation of microcellular foams in semi crystalline thermoplastics”, Materials & Manufacturing Processes, 4, 253, (1989).
  • [21] Alteepping J., Nebe, J. P., “Production of low density polypropylene foam”, US. Patent 4,940,736 (1990).
  • [22] Ahmadi A. A., Hornsby, P. R., Plas. Rubber Proc.Appl., 5. 35 (1985).
  • [23] Ahmadi A. A., Hornsby. P. R., Plas. Rubber Proc. Appl.,5, 51 (1985).
  • [24] Jacobs, L.J.M., Danen, K.C.H., Kemmere, M.F., Keurentjes, J.T.F., “A parametric study into the morphology of polystyrene-co-methyl methacrylate foams using supercritical carbon dioxide as a blowing agent”, Polymer, 48, 3771-3780 (2007).
  • [25] Dillon. B., J., “A Feasibility study of polypropylene and polypropylene / polyethylene blends for foamed wire and cable jacketing applications”, Degree of Master of Science, Department of Plastics Engineering, University of Massachusetts Lowell, (2004).
  • [26] Behravesh A., H., “Extrusion processing of low-density microcellular foams” Degree of Doctor of Philosophy, Department of Mechanical and Industrial Engineering, University of Toronto, (1998).
  • [27] Jun Z., Noboru K., Vıctor L., Albert Y., Guy N., “Constitutive Modeling of Polymeric Foam Material Subjected to Dynamic Crash Loading”, Int. J. Impact Engn, 21, (5), 369 386 (1998).
  • [28] Chul B. P., Amır H. B., Ronald D. V., “Low density microcellular foam processing in extrusion using CO2”, Polymer Engineering and Science, 38, (11), 1812–1823 (November 1998).
  • [29] Ema, Y., Ikeya, M., Okamoto, M., “Foam processing and cellular structure of polylactide-based nanocomposites”, Polymer, 47, 5350–5359 (2006).
  • [30] Tsivintzelis, I., Pavlidou, E., Panayiotou, C., “Biodegradable polymer foams prepared with supercritical CO2–ethanol mixtures as blowing agents”, J. of Supercritical Fluids, 42, 265–272 (2007).
  • [31] Huang, Q., Seibig, B., Paul, D., “Melt extruded open-cell Microcellular foams for membrance separation: Processing and cell Morphology Relationship”, Journal of Cellular Plastics, 36, 112-125 (March 2000).
  • [32] Siripurapu, S., Yvon J. Gay, Joseph R. R, Joseph M. DeSimone, Richard J. S., Saad A. K., “Generation of microcellular foams of PVDF and its blends using supercritical carbon dioxide in a continuous process.”, Polymer, 43, 5511–5520 (2002).
  • [33] Kumar, V., “Phenomenology of bubble nucleation in the solid-state nitrogen–polystyrene microcellular foams”, Colloids and Surfaces A: Physicochem. Eng. Aspects, 263, 336–340 (2005).
  • [34] Xlangmın H., Changchun Z., L. James L., Kurt W. K., Davıd L. T., “Extrusion of Polystyrene Nanocomposite Foams With Supercritical CO2”, Polymer Engineering and Science, 43, (6), 1261–1275 (June 2003).
  • [35] Saeed D., Chul B. P., Markt. K., “Effect of the Crystallinity and Morphology on the Microcellular Foam Structure of Semicrystalline Polymers”, Polymer Engineering and Science, 36, (21), 2645 – 2662 (2004).
  • [36] Gangjian G., “Development of fine-celled Bio-fiber composite foams using Physical blowing agents and nano-particles”, Degree of Doctor of Philosophy, Department of Mechanical and Industrial Engineering, University of Toronto (2006).
  • [37] Xanthos, M., Yılmazer, U., Dey, S. K., Quıntans, J. (March 2000). Melt Viscoelasticity of Polyethylene Terephthalate Resins for Low Density Extrusion Foaming. Polymer Engineering and Science, 40, (3), 554-566.
  • [38] Sauceau, M., Nikitine, C., Rodier, E., Fages, J., “Effect of supercritical carbon dioxide on polystyrene extrusion”, J. of Supercritical Fluids, 43 (2) (2008).
  • [39] Donglai X., “The role of die shape for promoting large volume expansion ratios of the extruded foams”, Degree of Doctor of Philosophy, Department of Mechanical and Industrial Engineering University of Toronto (2005).
  • [40] Jennifer M., “Costs saving opportunities push foaming agents forward”, Plastics Additives & Compounding 22-25 (September/October 2006).
  • [41] Marc A. J., Maartje F. K., Jos T.F. K., “Foam processing of poly(ethylene-co-vinyl acetate) rubber using supercritical carbon dioxide”, Polymer, 45, 7539–7547 (2004).
  • [42] Reverchon, E., Cardea, S., “Production of controlled polymeric foams by supercritical CO2”, J. of Supercritical Fluids, 40, 144–152 (2007).
  • [43] Huang, Q., Paul D., Seibig, B., “Advances solvent-free manufacturing of polymer membranes. GRSS Research Center, Germany-Feature” Membrane Technology No. 140.
  • [44] Nuno M. N., Kouyumdzhiev, A., Rui L. R., “The morphology, mechanical properties and ageing behavior of porous injection molded starch-based blends for tissue engineering scaffolding”, Materials Science and Engineering C, 25, 195–200 (2005).
  • [45] Greco, A., Maffezzoli, A., Manni, O., “Development of polymeric foams from recycled polyethylene and recycled gypsum”, Polymer Degradation and Stability 90, 256-263 (2005).
  • [46] Hanı E. N., Chul B. P., Patrıck C. L., “Effect of Talc Content on the Volume Expansion Ratio of Extruded PP Foams”, Journal of Cellular Plastics, 39, 499-511 (November 2003).
  • [47] Jacobs, L. J. M., Danen, K.C.H., Kemmere, M.F., Keurentjes, J.T.F., “Quantitative morphology analysis of polymers foamed with supercritical carbon dioxide using Voronoi diagrams”, Computational Materials Science, 38, 751–758 (2007).
  • [48] Xinhua D., Zhimin L., Yong W., Guanying Y., Jian X., Buxing H., “High damping property of microcellular polymer prepared by friendly environmental approach”, J. of Supercritical Fluids, 33, 259–267 (2005).
  • [49] Xiangmin Han M.E., “Continuous production of microcellular foams”, Degree Doctor of Philosophy, Graduate School of the Ohio State University, (2003).
  • [50] Andreas N. J. S., Volker A., “Controlling Morphology of Injection Molded Structural Foams by Mold Design and Processing Parameters”, Journal of Cellular Plastics, 43, 313–330 (July/September 2007).
  • [51] Everitt, S.L., Harlen, O.G., Wilson, H.J., “Competition and interaction of polydisperse bubbles in polymer foams”, J. Non-Newtonian Fluid Mech. 137, 60–71 (2006).