VİSKOELASTİK AKIŞKAN AKIŞININ SONLU ELEMANLAR METODU İLE HIZLI VE ETKİLİ SİMULASYONU

Bu çalışmada, sonlu elemanlar metodunu kullanarak viskoelastik akışkanların etkili ve hızlı olarak sayısalçözümü için gerekli algoritma verildi. Akış alanına ait hız, basınç, Newtonian ve polimerik gerilmeler çözümolarak sunuldu. Temel korunum yasaları çeşitli viskoelastik modeller (e.g. Upper-Convected-Maxwell Model,Oldroyd-B model and Giesekus model) kullanılarak matematiksel model elde edildi. Bu model, Newtonlineerleştirme metodu, SUPG sonlu elemanlar metodu ve GMRES iterative çözüm tekniği kullanılarak çözümlerelde edildi.

EFFICIENT AND FAST FINITE ELEMENT VISCOELASTIC FLUID FLOW SIMULATION EFFORTS

In this research, we provide finite element computational developments to predict the flow behavior of aviscoelastic fluid flow. The developments predict the velocity, pressure, and polymeric stress by modeling theconservation laws (e.g. mass and momentum) of the flow field coupled with constitutive equations for polymericstress field. The simulations target a variety of viscoelastic models (e.g. Upper-Convected-Maxwell Model,Oldroyd-B model and Giesekus model) to provide a fundamental understanding of the elastic effects on the flowfield. To solve the complex coupled nonlinear equations of the mathematical model described above, acombination of Newton linearization and the Galerkin and Streamline-Upwinding-Petrov-Galerkin (SUPG) finiteelement procedures are employed to accurately capture the representative physics.

___

  • [1] R. B. Bird, R. C. Armstrong, O. Hassager. “Dynamics of Polymeric Liquids, Vol. 1, Fluid Mechanics “,2nd ed., Wiley Interscience, 1987.
  • [2] A.N. Brooks and T.J.R. Hughes. “Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations”, Comput. Methods Appl. Mech. Eng., 32:199, 1982
  • [3] F. Shakib. “Finite element analysis of the compressible Eular and Navier-Stokes equations”, Ph.D. Dissertation, Stanford University, 1989.
  • [4] R.C. King, M.R. Apelian, R.C. Armstrong and R.A. Brown. “Numerically stable finite element techniques for viscoelastic calculations in smooth and singular geometries”, J. Non-Newtonian Fluid Mech., 29:147- 216, 1988
  • [5] Y. Saad and M.H. Schulz. “GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear system”, SIAM, J. Sci. Statist. Comput., 7:856-869, 1986
  • [6] B. Alakus. “Finite element computations of viscoelastic fluid flows employing quasi-linear and nonlinear models”, Ph.D. Dissertation, The University of Minnesota, 2001.
  • [7] M.R. Apelian, R.C. Armstrong and R.A. Brown. “Impact of the constitutive equation and singularity on the calculation of Stick-Slip flow: The modified upper-convected Maxwell model (MUCM)”, Journal of Non- Newtonian Fluid Mechanics, 27:299-321, 1988
  • [8] J.M. Marchal and M.J. Crochet. “A new mixed finite element for calculating viscoelastic flow” Journal of Non-Newtonian Fluid Mechanics, 26:77-114, 1987