Plant regeneration through somatic embryogenesis and polyamine levels in cultures of grasses of Thar Desert

Lasirus scindicus, Sorghum halepense ve Urochloa panicoide için potansiyel explant kaynağı olarak genç çiçeklerin bazal kısımları kullanılarak bitki rejenerasyonu için doku kültürü metotları geliştirilmiştir. 2,4- diklorofenoksiasetik asit’in (2-4,D) farklı konsantrasyonlarını içeren Murashige ve Skoog’s (MS) besi ortamları kullanılarak embriyonik kültürler başlatılmıştır. 26±2 oC’de ve karanlıkta MS besi ortamında alt kültürleme ile rejeneratif kültürler elde edilmiştir. Hormonsuz MS bazal besi yeri veya 1mgl-1kinetin’li MS besi yeri içeren kompetan hücre kültürlerinde somatik embriyogenez ile bitki rejenerasyonu gerçekleştirilmiştir. Somatik fideler başarılı bir şekilde saksılara ekilmiş ve arazide büyütülmüştür. Embriyonik ve embriyonik olmayan kültürlerde poliamin seviyeleri incelenmiştir. Somatik embriyogenez ile bitki rejenerasyonu özelliği olan kültür dokularında poliamin seviyesi ve putresin-spermidin oranı arasında bir korelasyon olduğu tespit edilmiştir.

Thar çölü otları kültürlerinde somatik embriyogenez ile bitki rejenerasyonu ve poliamin seviyeleri

Tissue culture methods for plant regeneration have been developed for Lasiurus scindicus, Sorghum halepense and Urochloa panicoides using basal portion of young inflorescence as new and a potential source(s) of explants. Highly embryogenic cultures were initiated on Murashige and Skoog’s (MS) medium supplemented with various concentrations of 2,4-dichlorophenoxyacetic acid (2-4,D). The regenerative cultures were maintained by subculture on MS medium in the dark at 26+2oC. Plants were regenerated via somatic embryogenesis from the competent cell cultures on hormone-free MS basal medium or MS medium with 1mgl-1 kinetin. Somatic seedlings were successfully transplanted to pots and grown to maturity in field. Polyamine levels were analyzed in embryogenic and non-embryogenic cultures. A correlation has been found between the individual polyamine levels and the ratio of putrescine to spermidine in the cultured tissues with plant regeneration ability via somatic embryogenesis

___

  • Ahmadabadi A, Ruf S and Bock R. A leaf – based regeneration and transformation system for maize ( Zea mays L.). Transgenic Research. 16: 437-448, 2007.
  • Altman A, Nadel BL, Falash Z and Levin N. Somatic embryogenesis in celery, induction, control and changes in polyamines and proteins. In Progress in Plant Cell Culture Biology. Nijkamp HJJ, Vander Plas LHW and Van Aartrijk J (Eds) Dordrecht, Kluwer Academic Publisher, The Nethaerland, 454-459,1990.
  • Bajaj S and Rajam MV. Efficient plant regeneration from long term callus cultures of rice by spermidine. Plant Cell Rep. 14: 717-720,1995.
  • Bajaj S and Rajam MV. Polyamine accumulation and near loss of morphogenesis in long term callus culture of rice: restoration of plant regeneration by manipulation cellular polyamine
  • levels. Plant Physiol. 112: 1343-1348, 1996.
  • Bertoldi D, Tassoni A, Martinelli L and Bagni N. Polyamines and somatic embryogenesis on two Vitis vinifera cultivars. Physiol. Plant. 120: 657-66, 2004.
  • Couee I, Hummel I, Sulmon C, Gouesbet G and Amrani AE. Involvement of polyamines in root development. Plant Cell Tiss. Org. Cult. 76: 1– 10, 2004.
  • Cvikrova M, Binarova P, Cenklova V, Eder J and Machackova I. Reinitiation of cell division and polyamine and aromatic monoamine levels in alfalfa explants during the induction of somatic embryogenesis. Physiol. Plant. 105: 330-337,1999.
  • Cvikrova M, Mala J, Eder J, Hrubcova M and Vagner M. Abscisic acid, polyamines and phenolic acids in sessile oak somatic embryos in relation to their conversion potential. Plant Physiol. Biochem. 36: 247-255, 1998.
  • Franklin G, Arvinth S, Sheeba CJ, Kanchana M and Subramonian N. Auxin pretreatment promotes regeneration of sugarcane (Saccharum spp. hybrids) midrib segment explants. Plant Growth Regul. 50:111–119, 2006.
  • Faure O, Mangoli M, Nougarede A and Bagni N. Polyamine pattern and biosynthesis in zygotic and somatic embryo stages of Vitis vinifera. J Plant Physiol. 138: 545-549, 1991.
  • Feirer RP, Wann SR and Einspahr DW. The effect of spermidine synthesis inhibitors on in vitro plant development. Plant Growth Reg. 3: 319- 327, 1985.
  • Hiraga S, Ito H, Yamakawa H, Ohtsubo N, Seo S, Mitsuhara I, Matsui H, Honma M and Ohashi Y. An HR-induced tobacco peroxidase gene is responsive to spermine, but not to salicylate, methyl jasmonate, and ethephon. Mol. Plant- Microbe Interact. 13: 210–216, 2000.
  • Hu Z, Wang LS, Guo GQ and Zheng GC. Effect of polyamines on organogenesis of Lycium barbarum calli. Shi Yan Sheng Wu Xue Bao. 34: 191- 196, 2001.
  • Ikeda M, Umehara M and Kamada H. Embryogenesis related genes, its expression and roles during somatic embryogenesis in carrot and Arbidopsi. Plant Biotechnology. 23: 153-161, 2006.
  • Ikeda M and Kamada H. Comparision of molecular mechanisms of somatic and zygotic embryogenesis. Plant Cell Monogr. 2: 51-68, 2006.
  • Imai A, Mastsuyama T, Hanzawa Y, Akiyama T, Tamakoki M, Saji H, Shrano Y, Kato T, Hayashi H, Shibata D, Tabata S, Komeda Y, and Takahashi T. Spermidine synthase gene are essential for survival of Arabidopsis. Plant Physiol.135:1565-1573, 2004.
  • Jauhar PP. Modern biotechnology as an Integral supplement to conventional plant breeding: the prospect and challenges. Crop Sci. 46: 1841-1859, 2006.
  • Kackar A and Shekhawat NS. Regeneration of Lasiurus scindicus (Hern) from tissue culture. Annals of Bot. 64: 455-458, 1989.
  • Kackar A and Shekhawat NS. Plant regeneration from cultured immature inflorescence of Cenchrus setigerus and Cenchrus ciliarsi, Indian J .Exp. Biol. 29: 62-64,1991.
  • Kakkar RK and Sawhney VK. Polyamine research in plants– a changing perspective. Physiol. Plant. 116: 281-292.2002.
  • Kaur-Sawhney R, Tiburcio AF, Altabella T and Galston AW. Polyamines in plants: An overview. Journal of Cell and Molecular Biology. 2: 1-12, 2003.
  • Kaur-Sawhney R, Shih LM and Galston AW. Relation of polyamine biosynthesis to the initiation of sprouting in potato tubers. Plant Physiol.69: 411-415,1982.
  • Li Z and Burritt DJ. Changes in endogenous polyamines during the formation of somatic embryos from isogenic lines of Dactylis glomerata L. with different regenerative capacities. Plant Growth Reg. 40: 65-75, 2003.
  • Litz RE and Schaffer B. Polyamines in adventitious and somatic embryogenesis in mango( Mangifera indica L.). J. Plant Physiol. 128: 251-259, 1987.
  • Lu CY, Chandler SF and Vasil IK. Somatic embryogenesis and plant-regeneration from cultured immature embryos of rye (Secal cereale L). J. Plant Physiol. 115: 237-244, 1984.
  • Martin-Tanguy J. Metabolism and function of polyamines in plants: recent development (new approaches). Plant Growth Reg. 34: 135-148, 2001.
  • Monterio M, Kevers C, Dommes J and Gaspar T. A. specific role of spermidine in the initiation phase of somatic embryogenesis Panax ginseng CA Mayer. Plant Cell Tiss. Org. Cult. 68: 225-232,2002.
  • Minocha R, Minocha SC and Long S. Polyamines and their biosynthetic enzymes during somatic embryo development in red spruce (Picea rubens Sarg.). In vitro Cell. Dev. Biol. 40: 572- 580, 2004.
  • Murashige T and Skoog F. A revised medium for rapid growth and bioassay with tobacco tissue culture. Physiol. Plant. 15: 473-497, 1962.
  • Pedroso MC, Primikirios N, Roubelakis Angelakis A and Pasi MS. Free and conjugated polyamines in embryogenic and non embryogenic leaf regions of Camellia leaves before and during direct somatic embryogenesis. Physiol. Plant. 101: 213-219, 1997.
  • Shoeb F, Yadav JS, Bajaj S and Rajam MV. Polyamines biomarkers for plant regeneration capacity: improvement of regeneration by modulation of polyamine in different genotypes of indica rice. Plant Sci. 160: 1229-1235, 2001.
  • Suparasanna P and Bapat VA. Differential gene expression during somatic embryogenesis. Plant Cell Monogr. 2: 305-302, 2006.
  • Tang W and Newton RJ. Polyamines promote root elongation and growth by increasing root cell division in regenerative Virginia pine (Pinus virginiana Mill.) plantlets. Plant Cell Rep. 24: 581-589, 2005.
  • Vasil V and Vail IK. Induction and maintenance of embryogenic callus cultures of Gramineae. In Cell Culture and Somatic Cell Genetics of Plants I. IK Vasil (Eds) Academic Press, Orlando, Florida, USA, 36-42, 1984.
  • Yamasaki H and Cohen M F. NO signal at the crossroads: polyamine-induced nitric oxide synthesis in plants? Trends in Plant Sci. 11: 522- 524, 2006.
Journal of Cell and Molecular Biology-Cover
  • ISSN: 1303-3646
  • Yayın Aralığı: Yılda 2 Sayı
  • Yayıncı: Haliç Üniv. Fen Edebiyat Fak.
Sayıdaki Diğer Makaleler

Epigenetic activation of genomic retrotransposons

Ahmet MANSOUR

The role of auxin-signaling gene axr1 in salt stress and jasmonic acid inducible gene expression in Arabidopsis thaliana

İskender TİRYAKİ

Identifying cis-acting DNA elements within the control region of glycogen phosphorylase 2 by DNaseI footprinting in Dictyostelium discoideum

Bekir ÇÖL, Charles L. RUTHERFORD

Stage specificity in the expression of proteins of honey bee fat body (Apis mellifera L.) in the course of ontogenesis

Evgeniya PLOVDİV, Teodora STAİKOVA

Esterase polymorphisms in relict endemic Liquidambar orientalis Mill. var. orientalis and L. orientalis Mill. var. integriloba Fiori populations in Turkey

Ömer VAROL, Tülin ARSLAN, Köksal KÜÇÜKAKYÜZ, Vatan TAŞKIN, Bekir ÇÖL, Göçmen Belgin TAŞKIN

Molecular genetics of Alzheimer's disease

Mehmet Baki YOKEŞ

Expression of silk gene in response to P-soyatose (hydrolyzed soy bean protein) supplementation in the fifth instar male larvae of Bombyx mori

Chaneasekar RAMAN, Suganthi L. MANOHAR, Nirmala XAVİER, Muthukalingan KRISHNAN

Reactive oxygen species homeostasis regulates 17β-estradiol mediation of low density lipoprotein receptor expression in macrophages

Anthony A. AZENABOR, Patrick KENNEDY, Jane-Francis AKOACHERE

Polyphenolic extract of Ichnocarpus frutescens modifies hyperlipidemia status in diabetic rats

Chidambaram T. KUMARAPPAN, T.Nageswara RAO, Subhash C MANDAL

Plant regeneration through somatic embryogenesis and polyamine levels in cultures of grasses of Thar Desert

Narpat S. SHEKHAWAT, Anup KACKAR