Orta Derece Isı ve Kür Etkisinin Atık Lastik İnce Agrega ile Üretilmiş Harç Özellikleri Üzerine Etkisi

Bu laboratuvar çalışması ile atık lastik ince agrega ile üretilen harçların mekanik özellikleri üzerinde kür ve orta dereceli ısı etkisinin nasıl bir etki yaptığını belirtmek amaçlamaktadır. Bu sebeple, karışım hesabında %0, %10 ve %20 gibi üç çeşit atık lastik oranı kullanıldı. Harç numunelerinin karışım hesabında 520 kg çimento kullanıldı. Kullanılan çimento türü, CEM I 42.5 R Portland çimentosu ve su/çimento oranı, tüm karışım tasarımında 0.485 seviyesinde tutulmuştur. Harcın içinde rilem kumu kullanılmıştır. Karışımda yuvarlak atık kauçuk kullanılmış ve kullanılan atık kauçukların dane boyutu 1-4 mm arasındadır. Kür süresinin etkisi, üç farklı atık lastik içeriğinin temelinde basınç dayanımı ve aşınma direnci açısından değerlendirildi. Dahası, basınç dayanımları iki farklı sıcaklık seviyesinde, yani 150oC ve 200oC'de ve üç farklı kür süresi koşuluyla, yani 3 gün, 7 gün ve 28 gün ile değerlendirildi. Sonuç olarak, basınç dayanımı açısından, harcın erken yaşlardaki değerlerinde sabit bir düşüş gözlenirken, 28 günlük kür koşullarında keskin bir düşüş görülmüştür. Aşınma direnci ile ilgili olarak, numunelerin erken yaşlarında aşınma kaybının arttığı belirlenmiştir. Bununla birlikte; aşınma kaybı, artan atık lastik içeriğiyle azalmıştır.

Mid-Temperature Thermal Effects on Properties of Mortar Produced with Waste Rubber as Fine Aggregate

This laboratory study aims to investigate curing and thermal effect on mechanical properties of mortar produced with waste rubber as fine aggregate. For this purpose, three type of rubber content was used in mix design like 0%, 10% and 20%. Mortar specimens were produced with 520 kg cement. The type of used cement is CEM I 42.5 R ordinary Portland cement and w/c ratio were kept at 0.485 level at all mix design. Rilem sand was used in the mortar. Rolled crumb waste rubber was used in the composition and the grain size of used waste rubber was between 1-4 mm. The effect of curing age was evaluated on compressive strength and abrasion resistance on the base of three distinct rubber content. Moreover, the compressive strength results were evaluated with two different temperature levels, i.e. 1500C and 2000C and three different curing age condition, i.e. 3 days, 7 days and 28 days. As a result, it was observed that there is a constant decrease at early curing age of mortar in terms of compressive strength, but there is a sharp decrease at 28-days curing condition. As for abrasion resistance, it was determined that abrasion loss was increased in the early curing age of specimens. However, abrasion loss was decreased with increasing rubber content.

___

  • ASTM C 128-1, 2003. Standard Test Method for Relative Density (Specific Gravity) and Absorption of Fine Aggregate, ASTM International, West Conshohocken, LA.
  • ASTM C 944, 2012. Standard test method for abrasion resistance of concrete or mortar surfaces by the rotating-cutter method, ASTM International, West Conshohocken, LA.
  • ASTM C349-02, 2002. Standard Test Method for Compressive Strength of Hydraulic-Cement Mortars (Using Portions of Prisms Broken in Flexure), ASTM International, West Conshohocken, LA.
  • Angelin, A.F., Andrade, M.F., Bonatti, R., Lintz, R.C.C., Gachet-Barbosa, L.A., Osório, W.R., 2015. Effects of spheroid and fiber-like waste-tire rubbers on interrelation of strength-to-porosity in rubberized cement and mortars. Construction and Building Materials, 95:525-536.
  • Benli, A., Karataş, M., Bakir, Y., 2017. An experimental study of different curing regimes on the mechanical properties and sorptivity of self-compacting mortars with fly ash and silica fume. Construction and Building Materials, 144:552-562.
  • Bing, C., Ning, L., 2013. Experimental research on properties of fresh and hardened rubberized concrete. Journal of Materials in Civil Engineering, 26(8).
  • Cemalgil, S., Onat, O., 2016, Compressive strength and abrasion resistance of concrete with waste marble and demolition aggregate. International Journal of Pure and Applied Sciences, 2(1):13-21.
  • Karatas, M., Balun, B., Benli, A., 2017. High temperature resistance of self-compacting lightweight mortar incorporating expanded perlite and pumice. Computers and Concrete, 19(2):121-126.
  • Lanzón, M., Cnudde, V., De Kock, T., Dewanckele, J., 2015. Microstructural examination and potential application of rendering mortars made of tire rubber and expanded polystyrene wastes. Construction and Building Materials, 94:817-825.
  • Mendis, A. S., Al-Deen, S., Ashraf, M., 2017. Behaviour of similar strength crumbed rubber concrete (CRC) mixes with different mix proportions. Construction and Building Materials, 137:354-366.
  • Muhammad, B., Ismail, M., Haron, Z., Ali Yussuf, A., 2011. Elastomeric effect of natural rubber latex on compressive strength of concrete at high temperatures. Journal of Materials in Civil Engineering, 23(12):1697-1702.
  • Muhammad, B., Ismail, M., Yussuf, A.A., Muhammad, A.R.B., 2011. Elastomeric influence of natural rubber latex on cement mortar at high temperatures using thermal degradation analysis. Construction and Building Materials, 25(5):2223-2227.
  • Onat, O., Celik, E., 2017. An integral based fuzzy approach to evaluate waste materials for concrete. Smart Structures and System, 19(3):323-333.
  • Pedro, D., de Brito, J., and Veiga, R., 2012, Mortars made with fine granulate from shredded tires. Journal of Materials in Civil Engineering, 25(4):519-529.
  • Reda Taha, M.M., El-Dieb, A.S., Abd El-Wahab, M.A., Abdel-Hameed, M.E., 2008. Mechanical, fracture, and microstructural investigations of rubber concrete. Journal of Materials in Civil Engineering, 20(10):640-649.
  • Topçu, İ.B., Demir, A., 2007. Durability of rubberized mortar and concret. Journal of Materials in Civil Engineering, 19(2):173-178.
  • Tupý, M., Sotiriadis, K., Kusák, I., Štefková, D., Luňák, M., Petránek, V., 2015. Exposure of mortars modified with rubber aggregates and polymer admixtures to acid environments and elevated temperature conditions. Journal of Materials in Civil Engineering, 28(4):04015171.
  • Turatsinze, A. Bonnet, S., Granju, J.L., 2007. Potential of rubber aggregates to modify properties of cement based-mortars: improvement in cracking shrinkage resistance. Construction and Building Materials, 21(1):176-181.
  • Turki, M., Bretagne, E., Rouis, M.J., Quéneudec, M., 2009. Microstructure, physical and mechanical properties of mortar–rubber aggregates mixtures. Construction and Building Materials, 23(7):2715-2722.
  • Turki, M., Naceur, I. B., Makni, M., Rouis, J., Saï, K., 2009. Mechanical and damage behaviour of mortar–rubber aggregates mixtures: experiments and simulations. Materials and Structures, 42(10): 1313.
  • Uygunoğlu, T., Topçu, İ.B., 2010. The role of scrap rubber particles on the drying shrinkage and mechanical properties of self-consolidating mortars. Construction and Building Materials, 24(7):1141-1150.
  • Youssf, O., Mills, J.E., Hassanli, R., 2016. Assessment of the mechanical performance of crumb rubber concrete. Construction and Building Materials, 125:175-183.
  • TS EN 933-1, 2015. Tests for geometrical properties of aggregates-Part 1: Determination of particle size distribution-Sieving method.
International Journal of Pure and Applied Sciences-Cover
  • ISSN: 2149-0910
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 2015
  • Yayıncı: Munzur Üniersitesi