Karanlık Madde Araştırmaları için Kullanılan Dedektör Teknolojileri

Evrendeki baryonik olmayan madde içeriğinin bilinen baryonik madde içeriğinden fazla olduğunun kozmolojik gözlemlerle açığa çıkmasından sonra, bu gizemli maddenin deneysel tespiti amacıyla dünya genelinde artan bir deneysel çalışma söz konusudur. Karanlık madde konusunda en kabul gören teorik görüş bu maddelerin zayıf etkileşimli ağır parçacıklar (Weakly Interacting Massive Particles, WIMPs) olduğu yönündedir. Farklı çalışma grupları farklı teknolojiler ve teknikleri kullanarak detektör sistemleri geliştirmekte ve çalıştırmaktadır. Bu çalışmada, karanlık madde araştırmaları için geliştirilen detektörlerin çalışma prensipleri ve şu anda gelinen mevcut durumları değerlendirilmiştir.

Detector Technologies used for the Dark Matter Searches

Since cosmological observations reveals that the non- baryonic content of the universe is beyond its baryonic content, a World wide increasing experimental effort is ongoing for the experimental detection of this mysterious  matter. The most compelling dark matter candidates are in the form of weakly Interacting Massive Particles (WIMPs). Different research groups are using different technologies and techniques to develop and operate detector systems.  In this work, the working principles and current status of the detectors developed for the dark matter searches are rewieved.

___

  • Agnese, R., Aramaki, T., Arnquist, I.J., Baker, W., Balakishiyeva, D., Banik, S., Barker, D., Thakur, R. B., Bauer, D. A. ve ark., 2017. Results from the super cryogenic dark matter search (SuperCDMS) experiment at Soudan. https://arxiv.org/abs/1708.08869, 29 Ağustos 2017.
  • Akerib, D., Alsum, S., Araujo, H.M., Bai, X., Bailey, A.J., Balajthy, J., Beltrame, P., Bernard, E.P., Bernstein, A. ve ark., 2017. Results from a search for dark matter in the complete LUX exposure. Physical Review Letters, 118:021303.
  • Aprile, E., Arisaka, K., Arneodo, F., Askin, A., Baudis, L., Behrens, A., Brown, E., Cardoso, J. M. R., Choi, B., Cline, D. ve ark., 2012. The XENON100 dark matter experiment. Astroparticle Physics, 35(9):573-590.
  • Aprile, E., Aalbers, J., Agostini, F., Alfonsi, M., Amaro, F.D., Anthony, M., Arneodo, F., Barrow, P., Baudis, L., Bauermeister, B. ve ark., 2017. First dark matter search results from the XENON1T experiment. https://arxiv.org/abs/1705.06655, 23 Kasım 2017.
  • Aprile, E., 2017. The XENON1T Dark matter experiment. https://arxiv.org/pdf/1708.07051.pdf, 23 Ağustos 2017.
  • Armengaud, E., Augier, C., Benoit, A., Berge, L., Blümer, J., Broniatowski, A., Brudanin, V., Censier, B., Chardin, G., ve ark., 2011. Final results of the EDELWEISS-II WIMP search using a 4-kg array of cryogenic germanium detectors with interleaved electrodes. Physics Letters B, 702:329-335.
  • Barabash, A.S., Bolozdynya, A. I., 1989. How to detect the dark matter of the galaxy if it is made up weakly interacting neutral particles with masses 1-10 GeV.c2. JETP Letters, 6(49):356-359.
  • Baudis, L., Ferella, A.D., Askin, A., Angle, J., Aprile, E., Bruch, T., Kish, A., Laubenstein, M., Manalaysay, A., Undagoita, T.M., Schumann, M., 2011. Gator: a low-background counting facility at the Gran Sasso Underground Laboratory. Journal of Instrumentation, 06:08010.
  • Begeman, K.G., Broeils, A.H., Sanders, R.H., 1991. Extended rotation curves of spiral galaxies: Dark haloes and modified dynamics. Monthly Notices of the Royal Astronomical Society, 249(3):523–537.
  • Bernabei, R., Belli, P., Bussolotti, A., Cappella, F., Cerulli, R., Dai, C.J., d’Angelo, A., He, H.L., Incicchitti, A., Kuang, H.H. ve ark., 2008. The DAMA/LIBRA apparatus. Nuclear Instrumentation and Methods A, 592(3):297-315.
  • Bernabei, R., Belli, P., Bussolotti, A., Cappella, F., Cerulli, R., Dai, C. J., d’Angelo, A., He, H.L., Incicchitti, A., Kuang, H. H. ve ark., 2010. New results from DAMA/LIBRA. The European Physical Journal C, 67:39-49.
  • Bradac, M. Allen, S. W., Treu, T., Ebeling, H., Massey, R., Morris, R. G., Linden, A., Applegate, D., 2008. Revealing the properties of dark matter in the merging cluster MACS J0025.4–1222. The Astrophysical Journal, 687:959-967.
  • Calvo, J., Cantini, C., Crivelli, P., Daniel, M., Diluise, S., Gendotti, A., Horikawa, S., Montes, B., Mu, W., Murphy, S., Natterer G. ve ark., 2016. The ArDM Liquid Argon Time Projection Chamber at the Canfranc Underground Laboratory: a ton-scale detector for Dark Matter Searches. https://arxiv.org/abs/1612.06375, 19 Aralık 2016.
  • Calvo, J., Cantini, C., Crivelli, P., Daniel, M., Diluise, S., Gendotti, A., Horikawa, S., Montes, B., Mu, W., Murphy, S., Natterer G. ve ark., 2017. Commissioning of the ArDM experiment at the Canfranc underground laboratory: first steps towards a tonne-scale liquid argon time projection chamber for Dark Matter searches. Journal of Cosmology and Astroparticle Physics, 03:003.
  • Clowe, D., Bradac, M., Gonzales, A.H., Markevitch, M., Randall, S. W., Jones, C., Zaritsky, D., 2006. A direct empirical proof of the existence of dark matter. The Astrophysical Journal Letters, 648:109-113. CRESST, 2016. Cryogenic rare event searches with superconducting thermometers. http://cresst.de/. 10 Ekim 2017
  • Dolgoshein, B.A., 1973. Electronic method of particle registiration in two-phase liquid-gas systems. Physics of Elementary Particles and Atomic Nuclei, 4(1):167-186.
  • Dunkley, J., Komatsu, E., Nolta, M.R., Spergel, D.N., Larson, D., Hinshaw, G., Page, L., Bennett, C.L., Gold, B. ve ark., 2009. Five-year wilkinson microwave anisotropy probe∗ observations: likelihoods and parameters from the WMAP data. The Astrophysical Journal Supplement Series, 180:306-329.
  • EDELWEISS, 2017. http://edelweiss.in2p3.fr/. Edelweiss-III Experiment for direct detection of WIMP dark matter. 15 Eylül 2017
  • Gaitskell, R.J., 2004. Direct detection of dark matter. Annual Review of Nuclear and Particle Science, 54:315-359.
  • Giboni, K.L., Aprile, E., Choi, B., Haruyama, T., Lang, R.F., Lim, K.E., Melgarejo, A.J., Plante, G., 2006. Xenon recirculation-purification with a heat exchanger. AIP Conference Proccedings, 823:1695.
  • Jungman, G. Kamionkowski, M., Griestd, K., 1996. Supersymmetric dark matter. Physics. Reports., 267(5):195- 373.
  • Kéfélian, C., 2015. Status of the EDELWEISS-III dark matter search. Journal of Physics: Conference Series, 606:012002.
  • Komatsu, E., Smith, K.M., Dunkley, J., Bennett, C.L., Gold, B., Hinshaw, G., Jarosik, N., Larson, D., Nolta, M. R., Page, L., Spergel, D.N. ve ark., 2011. Seven-year Wilkinson microwave anisotropy probe (WMAP) observations: Cosmological interpretation. The Astrophysical Journal Supplement Series, 192:18.
  • Lebedenko, V.N., Araujo, H.M., Barnes, E.J., Bewick, A., Cashmore, R., Chepel, V., Currie, A., Davidge, D., Dawson, J. ve ark., 2009. Results from the first science run of the ZEPLIN-III dark matter search experiment. Physical Review D, 80:052010.
  • Martens, K., 2009. The XMASS experiment at the Kamioka Observatory. Topics in Astroparticle and Underground Physics (TAUP), Gran Sasso, İtaly, 1-5 Temmuz.
  • Pettricia, F., Angloher, G., Bento, A., Bucci, C., Canonica, L., Defay, X., Erb, A., Feilitzsch, F. ve ark., 2016. New results on low-mass dark matter from the CRESST-II experiment. Journal of Physics: Conference Series, 718:042044.
  • Sander, J., Ahmed, Z., Anderson, A.J., Arrenberg, S., Balakishiyeva, D., Thakur, R.B. ve ark., 2013. SuperCDMS Status from Soudan and Plans for SNOLab. AIP Conference Proceedings, 1534:129-135.
  • Wambsganss, J., 1998. Gravitational lensing in astronomy. Living Reviews in Relativity,1:12.
  • Zwicky, F., 1933. Die rotverschiebung von extragalaktischen nebeln. Helvetica Physica Acta, 6:110-127.
International Journal of Pure and Applied Sciences-Cover
  • ISSN: 2149-0910
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 2015
  • Yayıncı: Munzur Üniersitesi