Darrieus Türbinleri için CFD Kullanılanılarak NACA ve NREL Aerofillerinin Karşılaştırmalı Bir Aerodinamik Analizi

Kanat profili seçimi, özellikle Darrieus rüzgar türbini gibi doğası gereği düşük verimli türbinler için optimum güç çıkışı elde etmede çok önemli bir rol oynar. Bu amaçla NACA ve NREL familyalarına ait farklı kanat profilleri aerodinamik performans açısından karşılaştırmalı olarak incelenmiştir. NREL kanatları ağırlıklı olarak Yatay Eksenli Rüzgar Türbinleri için kullanılmasına rağmen, bu çalışmada Darrieus tipi Dikey Eksenli Rüzgar Türbini üzerindeki etkileri incelenmiştir. Bu bakış açısıyla, çeşitli kanat profillerinin ve kalınlıklarının farklı çalışma aralıklarında türbin performansı üzerindeki etkisi Hesaplamalı Akışkanlar Dinamiği (HAD) kullanılarak değerlendirilmiştir. Ayrıca, düşük ve yüksek uç hız oranları dikkate alınarak, anlık kanat tork katsayısı ve seçilen kanatçıklar için basınç katsayısının konturları daha iyi anlaşılması için analiz edilmiştir. Araştırma bulguları, NACA0015 ve NACA0021 gibi geleneksel kanat profillerinin, optimum ve yüksek uç hız oranlarında daha iyi güç çıkışı gösterdiğini, S814 ve S825 gibi NREL kanat profillerinin ise nispeten düşük uç hız oranlarında tork üretimini artırabildiğini gösteriyor. Bu durum, NREL kanat profilini kendi kendine hareket eden bir Darrieus türbini tasarlamak için daha çekici hale getirse de, NREL kanat kanatları, daha yüksek uç hız oranlarında daha yüksek verim kaybı nedeniyle avantajlarını yitirmiştir. Buna ek olarak, NACA0021 ve S814 gibi daha kalın kanatlar, emiş ve basınç tarafları arasında elde edilen yüksek basınç farkı sonucunda muadil profillerine kıyasla düşük uç hız oranında daha fazla güç çıkışı sağlar.

A Comparative Aerodynamic Analysis of NACA and NREL Aerofoils for Darrieus Turbines Using CFD

The selection of the aerofoil plays a crucial role in achieving optimum power output, especially for the inherently low-efficient turbines, such as the Darrieus wind turbine. For this purpose, different aerofoils belonging to NACA and NREL families have been investigated in terms of the aerodynamic performance, comparatively. Although NREL aerofoils are mainly utilised for the Horizontal Axis Wind Turbines, in the present study, their effect on the Darrieus type Vertical Axis Wind Turbine has been examined. In this point of view, the influence of the various aerofoils and their thickness on the turbine performance in different operating ranges have been evaluated using Computational Fluid Dynamics (CFD). Furthermore, by considering the low and high tip speed ratios, the instantaneous blade torque coefficient, and the contours of the pressure coefficient for the selected aerofoils have been analysed to provide further understanding. The research findings show that the conventional aerofoils, such as NACA0015 and NACA0021, illustrate better power output at optimum and high tip speed ratios, while the NREL aerofoils, such as S814 and S825, are able to increase the torque generation at the relatively low tip speed ratio regions. Even though this situation makes the NREL aerofoil more desirable to design a self-starting Darrieus turbine, NREL aerofoils lost their advantages due to the higher efficiency loss at the higher tip speed ratios. In addition to this, the thicker aerofoils, such as NACA0021 and S814, yield more power output at the low tip speed ratio compared to their counterpart profiles as a result of the high pressure difference achieved between their suction and pressure sides.

___

  • Kaya MN, Kose F, Ingham D, Ma L, Pourkashanian M. Aerodynamic performance of a horizontal axis wind turbine with forward and backward swept blades. J Wind Eng Ind Aerodyn 2018;176:166–73. https://doi.org/10.1016/j.jweia.2018.03.023.
  • Celik Y, Ma L, Ingham D, Pourkashanian M. Aerodynamic investigation of the start-up process of H-type vertical axis wind turbines using CFD. J Wind Eng Ind Aerodyn 2020;204. https://doi.org/10.1016/j.jweia.2020.104252.
  • Celik Y. Aerodynamics and Self-Starting of Vertical Axis Wind Turbines with J-Shaped Aerofoils. Univ Sheffield, PhD Thesis 2021.
  • Elkhoury M, Kiwata T, Aoun E. Experimental and numerical investigation of a three-dimensional vertical-axis wind turbine with variable-pitch. J Wind Eng Ind Aerodyn 2015;139:111–23. https://doi.org/10.1016/j.jweia.2015.01.004.
  • Masson C, Leclerc C, Paraschivoiu I. Appropriate Dynamic-Stall Models for Performance. Int J Rotating Mach 1998;4:129–39.
  • El-Samanoudy M, Ghorab AAE, Youssef SZ. Effect of some design parameters on the performance of a Giromill vertical axis wind turbine. Ain Shams Eng J 2010;1:85–95. https://doi.org/10.1016/j.asej.2010.09.012.
  • Mohamed MH. Performance investigation of H-rotor Darrieus turbine with new airfoil shapes. Energy 2012;47:522–30. https://doi.org/10.1016/j.energy.2012.08.044.
  • Sengupta AR, Biswas A, Gupta R. Studies of some high solidity symmetrical and unsymmetrical blade H-Darrieus rotors with respect to starting characteristics, dynamic performances and flow physics in low wind streams. Renew Energy 2016;93:536–47. https://doi.org/10.1016/j.renene.2016.03.029.
  • Yadav AS, Shukla OP, Sharma A, Khan IA. CFD analysis of heat transfer performance of ribbed solar air heater. Mater Today Proc 2022. https://doi.org/10.1016/j.matpr.2021.12.560.
  • Zhao Y, Akolekar HD, Weatheritt J, Michelassi V, Sandberg RD. RANS turbulence model development using CFD-driven machine learning. J Comput Phys 2020;411:109413. https://doi.org/10.1016/j.jcp.2020.109413.
  • Lye KO, Mishra S, Ray D. Deep learning observables in computational fluid dynamics. J Comput Phys 2020;410:109339. https://doi.org/10.1016/j.jcp.2020.109339.
  • Raciti Castelli M, Englaro A, Benini E. The Darrieus wind turbine: Proposal for a new performance prediction model based on CFD. Energy 2011;36:4919–34. https://doi.org/10.1016/j.energy.2011.05.036.
  • Song C, Zheng Y, Zhao Z, Zhang Y, Li C, Jiang H. Investigation of meshing strategies and turbulence models of computational fluid dynamics simulations of vertical axis wind turbines. J Renew Sustain Energy 2015;7. https://doi.org/10.1063/1.4921578.
  • Pouraria H, Park WG. Comparison of different two equation turbulence models for studying the effect of Cold outlet diameter on cooling performance of vortex tube. ICMET 2010 - 2010 Int Conf Mech Electr Technol Proc 2010:304–8. https://doi.org/10.1109/ICMET.2010.5598369.
  • Celik Y, Ingham D, Ma L, Pourkashanian M. Design and aerodynamic performance analyses of the self-starting H-type VAWT having J-shaped aerofoils considering various design parameters using CFD. Energy 2022;123881. https://doi.org/doi.org/10.1016/j.energy.2022.123881.
  • Almohammadi KM, Ingham DB, Ma L, Pourkashan M. Computational fluid dynamics (CFD) mesh independency techniques for a straight blade vertical axis wind turbine. Energy 2013;58:483–93. https://doi.org/10.1016/j.energy.2013.06.012.
  • Elsakka MM, Ingham DB, Ma L, Pourkashanian M. CFD analysis of the angle of attack for a vertical axis wind turbine blade. Energy Convers Manag 2019;182:154–65. https://doi.org/10.1016/j.enconman.2018.12.054.