Varikap Diyot Kullanarak 700 MHz-1800 MHz Frekans Aralığında Çalışan Adaptif Bant Geçiren Filtre Tasarımı

Kablosuz haberleşme sistemlerinde filtreler önemli yer tutmaktadır. Bu sebeple çalışma frekansına göre farklı fiziksel özelliklere sahip filtreler yaygın olarak tasarlanıp kullanılmaktadır. Geleneksel yöntemlerle hazırlanan filtrelerin fiziksel özelliği sabit olduğu için çalışma frekansları da sabit olmaktadır. Bu çalışmada RF/Mikrodalga bölgesi için mikroşerit adaptif filtre tasarımı gerçekleştirilmiştir. Hazırlanan filtrenin adaptifliği sayesinde, uygulanan besleme gerilimi değiştirilerek, filtrenin fiziksel özelliklerini değiştirmeden farklı frekanslarda çalışabilmesi sağlanmıştır. Filtrenin benzetim çalışmalarında Keysight Teknoloji’nin ürettiği ve bir RF/Mikrodalga devre tasarım ve benzetim programı olan ADS programı tercih edilmiştir. Filtrede alttaş malzeme olarak, piyasada FR4 olarak bilinen; kayıp tanjant değeri 0,035, dielektrik malzeme kalınlığı 1,6mm, dielektrik sabiti 4,3 olan taban malzemesi kullanılmıştır. Hazırlanan filtreye SMV 1249 varikap diyodu ilave edilmiştir. Diyodun uçlarına 0V ile 14V arasında farklı gerilimler uygulanmış ve her durum için S11 ve S21 parametreleri kaydedilmiştir. Devrenin ölçümleri ise Rohde & Schwarz FSH6 spektrum analizör ile gerçekleştirilmiştir. Hazırlanan mikroşerit filtrenin mevcut hali ile GSM frekanslarını da içeren 700MHz ile 1800 MHz arasında Band geçiren filtre olarak kullanılabileceği gözlenmiştir.

Varicap Diode Used Adaptive Band-Pass Filter Design Operating in the Frequency Range of 700 MHz-1800 MHz

Filters play an important role in wireless communication systems. For this reason, filters with different physical properties according to the operating frequency are widely designed and used. Since the physical properties of the filters prepared by traditional methods are fixed, their operating frequencies are also fixed. In this study, microstrip adaptive filter design was carried out for the RF/Microwave region. Thanks to the adaptability of the prepared filter, the applied supply voltage is changed, allowing the filter to operate at different frequencies without changing its physical properties. In the simulation studies of the filter, the ADS program, which is an RF/Microwave circuit design and simulation program produced by Keysight Technology, was preferred. As a substrate material in the filter, known as FR4 in the market; A base material with a loss tangent value of 0.035, a dielectric material thickness of 1.6 mm, and a dielectric constant of 4.3 was used. SMV 1249 varicap diode was added to the prepared filter. Different voltages between 0V and 14V were applied to the ends of the diode and S11 and S21 parameters were recorded for each case. The measurements of the circuit were made with Rohde & Schwarz FSH6 spectrum analyzer. It has been observed that the prepared microstrip filter can be used as a band-pass filter between 700MHz and 1800MHz, including GSM frequencies.

___

  • [1] J.-S. G. Hong and M. J. Lancaster, Microstrip filters for RF/microwave applications vol. 167: John Wiley & Sons, 2004.
  • [2] J.-S. Hong, "Reconfigurable planar filters," IEEE Microwave Magazine, vol. 10, pp. 73-83, 2009.
  • [3] J. Nath, D. Ghosh, J.-P. Maria, A. I. Kingon, W. Fathelbab, P. D. Franzon, and M. B. Steer, "An electronically tunable microstrip bandpass filter using thin-film Barium-Strontium-Titanate (BST) varactors," IEEE Transactions on Microwave Theory and Techniques, vol. 53, pp. 2707-2712, 2005.
  • [4] J. Sigman, C. D. Nordquist, P. G. Clem, G. M. Kraus, and P. S. Finnegan, "Voltage-controlled Ku-band and X-band tunable combline filters using barium-strontium-titanate," IEEE Microwave and Wireless Components Letters, vol. 18, pp. 593-595, 2008.
  • [5] I. Vendik, O. Vendik, V. Pleskachev, A. Svishchev, and R. Wordenweber, "Design of tunable ferroelectric filters with a constant fractional band width," in 2001 IEEE MTT-S International Microwave Sympsoium Digest (Cat. No. 01CH37157), 2001, pp. 1461-1464.
  • [6] W. M. Fathelbab and M. B. Steer, "A reconfigurable bandpass filter for RF/microwave multifunctional systems," IEEE Transactions on Microwave Theory and Techniques, vol. 53, pp. 1111-1116, 2005.
  • [7] G. Torregrosa-Penalva, G. López-Risueno, and J. I. Alonso, "A simple method to design wide-band electronically tunable combline filters," IEEE Transactions on Microwave Theory and Techniques, vol. 50, pp. 172-177, 2002.
  • [8] I. Vendik, O. Vendik, V. Pleskachev, and M. Nikol'ski, "Tunable microwave filters using ferroelectric materials," IEEE transactions on applied superconductivity, vol. 13, pp. 716-719, 2003.
  • [9] B.-W. Kim and S.-W. Yun, "Varactor-tuned combline bandpass filter using step-impedance microstrip lines," IEEE Transactions on Microwave Theory and Techniques, vol. 52, pp. 1279-1283, 2004.
  • [10] M. Sanchez-Renedo, "High-selectivity tunable planar combline filter with source/load-multiresonator coupling," IEEE Microwave and Wireless Components Letters, vol. 17, pp. 513-515, 2007.
  • [11] G. M. Kraus, C. L. Goldsmith, C. D. Nordquist, C. W. Dyck, P. S. Finnegan, F. Austin, A. Muyshondt, and C. T. Sullivan, "A widely tunable RF MEMS end-coupled filter," in 2004 IEEE MTT-S International Microwave Symposium Digest (IEEE Cat. No. 04CH37535), 2004, pp. 429-432.
  • [12] P. Blondy, C. Palego, M. Houssini, A. Pothier, and A. Crunteanu, "RF-MEMS reconfigurable filters on low loss substrates for flexible front ends," in 2007 Asia-Pacific Microwave Conference, 2007, pp. 1-3.
  • [13] A. Pothier, J.-C. Orlianges, G. Zheng, C. Champeaux, A. Catherinot, D. Cros, P. Blondy, and J. Papapolymerou, "Low-loss 2-bit tunable bandpass filters using MEMS DC contact switches," IEEE Transactions on Microwave Theory and Techniques, vol. 53, pp. 354-360, 2005.
  • [14] K. Entesari and G. M. Rebeiz, "A differential 4-bit 6.5-10-GHz RF MEMS tunable filter," IEEE Transactions on Microwave Theory and Techniques, vol. 53, pp. 1103-1110, 2005.
  • [15] I. C. Reines, C. L. Goldsmith, C. D. Nordquist, C. W. Dyck, G. M. Kraus, T. A. Plut, P. S. Finnegan, F. Austin, and C. T. Sullivan, "A low loss RF MEMS Ku-band integrated switched filter bank," IEEE Microwave and Wireless Components Letters, vol. 15, pp. 74-76, 2005.
  • [16] R. Zhang and R. Mansour, "Novel tunable lowpass filters using folded slots etched in the ground plane," in IEEE MTT-S International Microwave Symposium Digest, 2005., 2005, pp. 4 pp.-778.
  • [17] G. M. Rebeiz, K. Entesari, I. C. Reines, S.-J. Park, M. A. El-Tanani, A. Grichener, and A. R. Brown, "Tuning in to RF MEMS," IEEE Microwave Magazine, vol. 10, pp. 55-72, 2009.
  • [18] L.-H. Hsieh and K. Chang, "Tunable microstrip bandpass filters with two transmission zeros," IEEE Transactions on Microwave Theory and Techniques, vol. 51, pp. 520-525, 2003.
  • [19] W.-H. Tu and K. Chang, "Piezoelectric transducer-controlled dual-mode switchable bandpass filter," IEEE Microwave and Wireless Components Letters, vol. 17, pp. 199-201, 2007.
  • [20] Y. Poplavko, D. Schmigin, V. Pashkov, M. Jeong, and S. Baik, "Tunable microstrip filter with piezo-moved ground electrode," in 2005 European Microwave Conference, 2005, pp. 3 pp.-1294.
  • [21] S. Pal, C. Stevens, and D. Edwards, "Tunable HTS microstrip filters for microwave electronics," Electronics Letters, vol. 41, pp. 286-288, 2005.
  • [22] G. L. Matthaei, "Narrow-band, fixed-tuned, and tunable bandpass filters with zig-zag hairpin-comb resonators," IEEE Transactions on Microwave Theory and Techniques, vol. 51, pp. 1214-1219, 2003.
  • [23] G. Subramanyam, F. W. Van Keuls, and F. A. Miranda, "A K-band-frequency agile microstrip bandpass filter using a thin-film HTS/ferroelectric/dielectric multilayer configuration," IEEE Transactions on Microwave Theory and Techniques, vol. 48, pp. 525-530, 2000.
  • [24] Y.-H. Chun, H. Shaman, and J.-S. Hong, "Switchable embedded notch structure for UWB bandpass filter," IEEE Microwave and Wireless Components Letters, vol. 18, pp. 590-592, 2008.
  • [25] E. Djoumessi, M. Chaker, and K. Wu, "Varactor-tuned quarter-wavelength dual-bandpass filter," IET microwaves, antennas & propagation, vol. 3, pp. 117-124, 2009.
  • [26] D. R. Jachowski, "Compact, frequency-agile, absorptive bandstop filters," in IEEE MTT-S International Microwave Symposium Digest, 2005., 2005, p. 4 pp.
  • [27] Y.-H. Chun, J.-S. Hong, P. Bao, T. J. Jackson, and M. J. Lancaster, "BST varactor tuned bandstop filter with slotted ground structure," in 2008 IEEE MTT-S International Microwave Symposium Digest, 2008, pp. 1115-1118.
  • [28] S. Y. Huang and Y. H. Lee, "A compact E-shaped patterned ground structure and its applications to tunable bandstop resonator," IEEE Transactions on Microwave Theory and Techniques, vol. 57, pp. 657-666, 2009.
  • [29] Y.-H. Chun, J.-S. Hong, P. Bao, T. J. Jackson, and M. J. Lancaster, "An electronically tuned bandstop filter using BST varactors," in 2008 38th European Microwave Conference, 2008, pp. 1699-1702.
  • [30] W. Yan and R. Mansour, "Compact tunable bandstop filter integrated with large deflected actuators," in 2007 IEEE/MTT-S International Microwave Symposium, 2007, pp. 1611-1614.
  • [31] Y.-H. Chun, J.-S. Hong, P. Bao, T. J. Jackson, and M. J. Lancaster, "BST-Varactor Tunable Dual-Mode Filter Using Variable ${Z} _ {C} $ Transmission Line," IEEE Microwave and Wireless Components Letters, vol. 18, pp. 167-169, 2008.
  • [32] M. R. Al Mutairi, A. F. Sheta, and M. A. AlKanhal, "A novel reconfigurable dual-mode microstrip meander loop filter," in 2008 38th European Microwave Conference, 2008, pp. 51-54.
  • [33] Y.-H. Chun and J.-S. Hong, "Electronically reconfigurable dual-modemicrostrip open-loop resonator filter," IEEE Microwave and Wireless Components Letters, vol. 18, pp. 449-451, 2008.
  • [34] W. Tang, J.-S. Hong, and Y.-H. Chun, "Compact tunable microstrip bandpass filters with asymmetrical frequency response," in 2008 38th European Microwave Conference, 2008, pp. 599-602.
  • [35] W. Tang and J.-S. Hong, "Tunable microstrip quasi-elliptic function bandpass filters," in 2009 European Microwave Conference (EuMC), 2009, pp. 767-770.
  • [36] W. Tang and J.-S. Hong, "Varactor-tuned dual-mode bandpass filters," IEEE Transactions on Microwave Theory and Techniques, vol. 58, pp. 2213-2219, 2010.
  • [37] H. R. Arachchige, J.-S. Hong, and Z.-C. Hao, "UWB bandpass filter with tunable notch on liquid crystal polymer substrate," in 2008 Asia-Pacific Microwave Conference, 2008, pp. 1-4.
  • [38] P. W. Wong and I. C. Hunter, "A new class of low-loss high-linearity electronically reconfigurable microwave filter," IEEE Transactions on Microwave Theory and Techniques, vol. 56, pp. 1945-1953, 2008.
  • [39] T. Cheng and K.-W. Tam, "A wideband bandpass filter with reconfigurable bandwidth based on cross-shaped resonator," IEEE Microwave and Wireless Components Letters, vol. 27, pp. 909-911, 2017.
  • [40] A. Miller and J.-S. Hong, "Wideband bandpass filter with multiple reconfigurable bandwidth states," in The 40th European Microwave Conference, 2010, pp. 1273-1276.
International Journal of Innovative Engineering Applications-Cover
  • Başlangıç: 2016
  • Yayıncı: Niyazi Özdemir