YAPIM ZAMANI İÇİN ERİMİŞ BİRİKİM MODELLEME İŞLEM PARAMETRELERİNİN OPTİMİZASYONU

Eriyik yığma modelleme (Fused Deposition Modeling)(FDM), makul bir zaman periyodunda geometrik karmaşıklıkla işlevsel plastik parçaları oluşturabilme özelliğinden dolayı en hızlı büyüyen katman imalatı teknolojisinden biri olarak gelişimini devam ettiren bir teknolojidir. FDM, tasarlanan CAD verilerinden doğrudan nesneleri oluşturmak için yarı ergimiş termoplastik polimerin bir tabla üzerine katmanlar şeklinde inşa edilerek üretilen bir hızlı prototipleme tekniğidir. Bu çalışmanın amacı, dolgu tipi ( ızgara, üçgen ve petek) Katman kalınlığı (µm), Dolum yoğunluğu ( %10, %20 ve % 30) gibi süreç parametrelerinin yapım süresi üzerindeki etkisini incelenmiştir.

Optimization Of Fused Deposition Modeling Process Parameters For Building Time

Fused Deposition Modeling (FDM) is a technology that continues to evolve as one of the fastest growing layer manufacturing technologies because of its ability to create functional plastic parts with geometric complexity over a reasonable period. FDM is a rapid prototyping technique that is produced by laying layers of semi-molten thermoplastic polymer on a plate to form objects directly from the designed CAD data. The purpose of this study was to investigate the effect of process parameters such as filler type (grid, triangle and honeycomb), layer thickness (μm), and fill density (10%, 20% and 30%) on construction time.

___

  • 1. Ahn, Sung-Hoon, Michael Montero, Dan Odell, Shad Roundy, and Paul K. Wright. "Anisotropic material properties of fused deposition modeling ABS." Rapid prototyping journal 8, no. 4 (2002): 248-257.2. Thrimurthulu, K. P. P. M., Pulak M. Pandey, and N. Venkata Reddy. "Optimum part deposition orientation in fused deposition modeling." International Journal of Machine Tools and Manufacture 44, no. 6 (2004): 585-594.3. Anitha, R., S. Arunachalam, and P. Radhakrishnan. "Critical parameters influencing the quality of prototypes in fused deposition modelling." Journal of Materials Processing Technology 118, no. 1-3 (2001): 385-388.4. Kumar, G. Pavan, and Srinivasa Prakash Regalla. "Optimization of support material and build time in fused deposition modeling (FDM)." In Applied Mechanics and Materials, vol. 110, pp. 2245-2251. Trans Tech Publications, 2012.5. Rao, R. Venkata, and Dhiraj P. Rai. "Optimization of fused deposition modeling process using teaching-learning-based optimization algorithm." Engineering Science and Technology, an International Journal 19, no. 1 (2016): 587-603.6. Pitayachaval, Paphakom, and Kriengsak Masnok. "Feed rate and volume of material effects in fused deposition modeling nozzle wear." In Industrial Engineering and Applications (ICIEA), 2017 4th International Conference on, pp. 39-44. IEEE, 2017.7. Zhu, Zicheng, Vimal Dhokia, and Stephen T. Newman. "A new algorithm for build time estimation for fused filament fabrication technologies." Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 230, no. 12 (2016): 2214-2228.8. Fodran, Eric, Martin Koch, and Unny Menon. "Mechanical and dimensional characteristics of fused deposition modeling build styles." In Solid Freeform Fabrication Proc, pp. 419-442. 1996.9. Teitelbaum, Gregory A., Linda C. Schmidt, and Yoann Goaer. "Examining potential design guidelines for use in fused deposition modeling to reduce build time and material volume." In ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp. 73-82. American Society of Mechanical Engineers, 2009.10. Kumar, G. Pavan, and Srinivasa Prakash Regalla. "Optimization of support material and build time in fused deposition modeling (FDM)." In Applied Mechanics and Materials, vol. 110, pp. 2245-2251. Trans Tech Publications, 2012.