ELASTOMETRİK MALZEMELERİN KATMANLI İMALATINDA TEMEL PARAMETRELERİN ANALİZİ

Katmanlı imalat teknolojisindeki gelişmeler mekatronik, robotik, havacılık ve biyomedikal ürünler gibi birçok farklı uygulamanın üretim yapılmasına olanak sağlamaktadır. Bu uygulamalardaki istenen parametrelerden biri de esnek mekanik özelliklere sahip olunmasıdır. Geleneksel döküm teknolojisi kullanılarak yapılan üretimle karşılaştırıldığında katmanlı imalat tekniği birçok açıdan daha kolay son ürüne erişilebilen bir tekniktir. Bu çalışmada, esnek ürün elde edilmesi için katmanlı imalat teknolojisinde malzeme seçimi ve imalat parametreleri ile ilgili gerekli ön şartlar araştırılmıştır. 

Analysis of The Basic Parameters in Additive Manufacturing of The Elastomeric Materials

The development in additive manufacturing technology facilitates the production of the final product for varied applications; such as mechatronics, robotics, aerospace and biomedical devices. The soft mechanical property is one of the desired parameters for these applications. The final product can be easily manufactured through the additive manufacturing process compared to the conventional casting technique. In this study, the prerequisite for material selection and manufacturing parameters in additive manufacturing investigated for the soft products. Taking into consideration the mechanical properties such as tensile strength, hardness and modulus of elasticity, it has been determined that polymeric materials should be selected according to the application requirements to be used. Manufacturing parameters were determined with a flexible polymeric filament using fused deposition modeling (FDM) technique.

___

  • [1] Saari, M., Galla, M., Cox, B., Krueger, P., Cohen, A. and Richer, E., 2015. Additive Manufacturing of Soft and Composite Parts from Thermoplastic Elastomers. In Solid Freeform Fabrication Symposium. Austin, TX: University of Texas at Austin (pp. 949-958)
  • [2] Mutlu, R., Yildiz, S.K., Alici, G., in het Panhuis, M. and Spinks, G.M., 2016, July. Mechanical stiffness augmentation of a 3D printed soft prosthetic finger. In Advanced Intelligent Mechatronics (AIM), 2016 IEEE International Conference on (pp. 7-12). IEEE.
  • [3] Mutlu, R., Alici, G., in het Panhuis, M. and Spinks, G., 2015, July. Effect of flexure hinge type on a 3D printed fully compliant prosthetic finger. In Advanced Intelligent Mechatronics (AIM), 2015 IEEE International Conference on (pp. 790-795)
  • [4] Moscato, S., Bahr, R., Le, T., Pasian, M., Bozzi, M., Perregrini, L. and Tentzeris, M.M., 2016. Infill-Dependent 3-D-Printed Material Based on NinjaFlex Filament for Antenna Applications. IEEE Antennas and Wireless Propagation Letters, 15, pp.1506-1509.
  • [5] Przybytek, A., Kucińska-Lipka, J. and Janik, H., 2016. Thermoplastic elastomer filaments and their application in 3D printing. Elastomery, 20.
  • [6] Gebhardt, A., 2007. Rapid Prototyping–Rapid Tooling–Rapid Manufacturing. Carl Hanser, München.
  • [7] http://www.gyrobot.co.uk/blog/how-to-3d-print-with-flexible-filaments, erişim tarihi 06.03.2017