ENDÜSTRİYEL BOYUTLU ÇİFT BAŞLI KARTEZYEN TİPİ ÜÇ BOYUTLU YAZICI TASARIMI VE PROTOTİP ÜRETİMİ

Bu çalışmada endüstriyel boyutlarda kartezyen tipi ve çift baskı kafasına sahip FDM yöntemi ile çalışanüç boyutlu yazıcı tasarımı ve prototipi yapmıştır. 3B yazıcının genel boyutları 990x1035x1540 mm dir.Yazdırma boyutları 600x700x800 mm dir. Tabla doğrudan 220 V ileısıtılmaktadır. ABS ve PLAfilamentlerinden sehpa ayakları üretimi yapılmıştır. Sistem çalışma sırasında 415 W/h enerjitüketmektedir. Yazdırma hızı ve katman kalınlığının üretim kalitesine etkisi araştırılmıştır.

INDUSTRIAL SIZES DOUBLE NOZZLE AND CARTESIAN TYPE 3D PRINTER DESIGN AND PROTOTYPING

In this study the design of three dimensional printer and its prototyping which are in industrial sizes, cartesian type and have double nozzle run by the method of FDM were made. The general sizes of three dimensional printer is 990x1035x1540 mm. The size of printing is 600x700x800 mm. The hotbed is directly heated with 220V. The coffee table legs are made from the filaments of ABS and PLA. The system consumes 415 w/h energy during the production. It was investigated of the printing and thickness of layer on the effect of quality of production.

___

  • 1. Prince, D., “3D printing: an industrialrevolution”, Journal of Electronic Resources in Medical Libraries, 11 (1): 39-45 (2014).
  • 2. Kruth, J. P.,Leu, M. C. And Nakagawa, T., "Progress in additive manufacturing and rapidprototyping",Annals of theCirp, 47 (2): 525-540 (1998).
  • 3. Azari, A. andNikzad S., "The evolution of rapid prototyping in dentistry: a review",RapidPrototypingJournal, 15 (3): 216 - 225 (2009).
  • 4. Hull, C.,Feygin, M., Baron, Y., Sanders, R., Sachs, Lightman, E., A. And Wohlers, T.,"Rapid prototyping: current technology and future potential",Rapid Prototyping Journal, 1 (1): 11-19 (1995).
  • 5. Pham, D. T. andGault, R. S., “A comparison of rapidprototypingtechnologies”, International Journal of Machine Tools &Manufacture, 38 (1): 1257–1287 (1997).
  • 6. Levy, G. N.,Schindel, R. andKruth, J. P., "Rapid manufacturing and rapid tooling with layermanufacturıng (lm) technologıes",State of the art andfutureperspectives, 1 (1): 1-21 (1996).
  • 7. Polzin, C.,Spath, S. andSeitz, H. ,"Characterizationandevaluation of a PMMA-based 3D printingprocess",Department of MechanicalEngineering, 19 (1): 37-43 (2013).
  • 8. G. C. Anzalone, B. Wijnenand J. M. Pearce, “Multi-material additive and subtractive prosumer digital fabrication with a free and open-source convertible delta RepRap 3-D printer”, Rapid Prototyping Journal,Volume 21 · Number 5 · 2015 · 506–519
  • 9. Vaezi, M.,Chianrabutra, S., Mellor, B. andYang, S. ,"Multiplematerial additive manufacturing - Part 1: A Review", Virtual andPhysicalPrototyping, 1 (1): 19-50 (2013).
  • 10. C. Duran, V. Subbian, M. T. Giovanetti, J. R. Simkinsand F. R. BeyetteJr, “Experimentaldesktop 3D printing using dual extrusion and water-solublepolyvinyl alcohol”, Rapid Prototyping Journal,Volume 21 · Number 5 · 2015 · 528–534
  • 11. B. Stephens, P. Azimi, Z. El Orch, T. Ramos, “Ultra fine particle emissions from desktop 3D printers” Atmospheric Environment, 79 (2013) 334-339
  • 12. Rayna, L. Striukova, “From rapid prototyping to home fabrication: How 3D printing is changingbusiness model innovation”, TechnologicalForecasting&SocialChange, 102 (2016) 214–224