Al/CdZnO/p-Si (MIS) Yapısının Voltaja Bağlı Arayüzey Durumlarının ve Bu Durumların Gevşeme Sürelerinin Admitans Metodu İle İncelenmesi

Al/CdZnO/p-Si (MIS) yapısının voltaja bağlı arayüzey durumları / tuzakları (Nss) ve bu durumların gevşeme süreleri () 5 kHz-1 MHz frekans aralığındaki C-V-f ve G/-V-f ölçümleri kullanılarak admitans yöntemi ile incelenmiştir. Hem C hem de G/ değerleri voltaj ve frekansın güçlü bir fonksiyonu olarak bulundu ve bu değerler hemen hemen her voltaj için azalan frekansla artar. Düşük frekanslarda elde edilen daha yüksek C ve G değerleri, CdZnO/p-Si arayüzeyi arasında yer alan Nss varlığından kaynaklanmaktadır. Düşük frekanslarda, tuzaklardaki yüklerin gevşeme süresi uygulanan ac sinyalin periyodundan (≥T) daha büyüktür, bu nedenle ölçülen C ve G/ değerlerine katkıda bulunabilirler. Ayrıca, Nss varlığı yapının hesaplanan paralel iletkenlik (Gp/)-Lnf eğrilerinde bir pike neden olur. Böylece, hem Nss hem de  değerleri, sırasıyla pik değerinden ve pikin konumundan hesaplandı. Nss ve  değerleri, sırasıyla 1.7 V’da 1.65x1013 eV-1 cm-2, 31.4s ve 3 V’da 1.39x1013 eV-1 cm-2, 9.18 s arasında değişmiştir. Bu değerler oda sıcaklığında bu yapılar için çok uygundur.

Investigation of the Voltage Dependent Surface States and Their Relaxation Time of the Al/CdZnO/p-Si (MIS) Structure Via Admittance Method

The voltage dependent surface states/traps (Nss) and their relaxation time () of the Al/CdZnO/p-Si (MIS) structure were investigated with admittance method using C-V-f and G/-V-f measurements in the frequency range of 5 kHz-1 MHz. Both the values of C and G/ were found as strong function of voltage and frequency and they increase with decreasing frequency almost for each voltage. The obtained higher values of C and G at the low frequencies are due to the presence of Nss located between CdZnO/p-Si interfaces. At low frequencies, the relaxation time of the charges at the traps is larger than the period (≥T) of the applied ac signal, so they can contribute to the measured C and G/ values. In addition, the presence of Nss causes a peak at the extracted parallel conductance (Gp/) versus Lnf curves of the structure. Thus, both the values of Nss and  were calculated from the peak value and its position, respectively. The values of Nss and  ranged from 1.65x1013 eV-1 cm-2, 31.4 s at 1.7 V and 1.39x1013 eV-1 cm-2, 9.18 s at 3 V, respectively. These values are very suitable for these structures at room temperature.

___

  • Akhlaghi E A, Badali Y, Altındal Ş, Azizian-Kalandaragh Y, 2018. Preperaiton of mixed copper/PVA nanocomposites as an interface layer for fabrication of Al/Cu-PVA/p-Si Schottky structures. Physica B: Condensed Matter, 546; 93-98.
  • Altındal Ş, Şafak Asar Y, Kaya A, Sönmez Z, 2012. Investigation of interface states in Al/SiO2/p_Si (MIS) structures with 50 and 826 Å SiO2 interfacial layer using admittance spectroscopy method. Journal of Optoelectronics and Advanced Materials, 14; 998-1004.
  • Badali Y, Nikravan A, Altındal Ş, Uslu İ, 2018. Effects of a Thin Ru-Doped PVP Interface Layer on Electrical Behavior of Ag/n-Si Structures. Journal of Electronic Materials, 47; 3510-3520.
  • Büyükbaş Uluşan A, Tataroğlu A, Azizian-Kalandaragh Y, Altındal Ş, 2018. On the conduction mechanisms of Au/ (Cu2O–CuO–PVA)/n-Si (MPS) Schottky barrier diodes (SBDs) using current–voltage–temperature (I–V–T) characteristics. Journal of Material Science: Materials in Electronic, 29; 159–170.
  • Card HC, Rhoderick EH, 1971. Studies of tunnel MOS diodes I. Interface effects in silicon Schottky diodes. Journal of Physics D: Applied Physics, 4; 1589-1601.
  • Castagne R, Vapaille A, 1971. Description of the SiO2-Si interface properties by means of very low frequency MOS capacitance measurements. Surface Science, 28; 157-193.
  • Chattopadhyay P, Raychaundhuri B, 1993. Frequency dependence of forward capacitance-voltage characteristics of Schottky barrier diodes. Solid-State Electronics, 36; 605-610.
  • Demirezen S, Kaya A, Altındal Ş, Uslu İ, 2017. The energy distribution profile of interface traps and their relaxation times and capture cross sections of Au/GO-doped PrBaCoO nanoceramic/n-Si capacitors at room temperature. Polymer Bulletin, 74; 3765-3781.
  • Durmuş P, Altındal Ş, 2017. Two-diode behavior in metal-ferroelectric-semiconductor structures with bismuth titanate interfacial layer. International Journal of Modern Physics B, 31; 1750197.
  • Ejderha K, Orak I, Duman S, Türüt A, 2018. The Effect of Thermal Annealing and Measurement Temperature on Interface State Density Distribution and Time Constant in Ni/n-GaP Rectifying Contacts. Journal of Electronic Materials, 47; 3502-3509.
  • Engel-Herbert R, Hwang Y, Stemmer S, 2010. Comparison of methods to quantify interface trap densities at dielectric/III-V semiconductor interfaces. Journal of Applied Physics, 108; 124101-15.
  • Güçlü ÇŞ, Özdemir AF, Karabulut A, Kökce A, Altındal Ş, 2019. Investigation of temperature dependent negative capacitance in the forward bias C-V characteristics of (Au/Ti)/Al2O3/n-GaAs Schottky barrier diodes (SBDs). Materials Science in Semiconductor Processing, 89; 26-31.
  • Hill WA, Coleman CC, 1980. A single-frequency approximation for interface-state density determination. Solid-State Electronics, 23; 987-993.
  • Kar S, Dahlke WE, 1972. Interface states in MOS structures with 20–40 Å thick SiO2 films on nondegenerate Si. Solid-State Electronics, 15; 221-237.
  • Karabulut A, 2018. Dielectric Characaterization of Si_based Heterojunction with TiO2 Interfacial Layer. Iğdır University journal of the Institute of Science and Technology, 8; 119-129.
  • Karma S, Varma S, 1985. Determination of silicon-silicon dioxide interface state properties from admittance measurements under illumination. Journal of Applied Physics, 58; 4256-4266.
  • Kaya A, Sevgili Ö, Altındal Ş, 2014. Energy density distribution profiles of surface states, relaxation time and capture cross-section in Au/n-type 4H-SiC SBDs by using admittance spectroscopy method. International Journal of Modern Physics B, 28; 1450104-16 pages.
  • Kaya A, Tecimer H, Vural Ö, Taşdemir İH, Altındal Ş, 2014. Capacitance/Conductance-Voltage-Frequency Characteristics of Au/PVC+TCNQ/p-Si Structures in Wide Frequency Range. IEEE Transactions on Electron Devices, 61; 584-590.
  • Kuhn M, 1970. A Quasi-Static Technique for MOS C-V and Surface State Measurements. Solid State Electronics, 13; 873-885.
  • Marıl E, Tan SO, Altındal Ş, Uslu İ, 2018. Evaluation of Electric and Dielectric Properties of Metal-Semiconductor Structures With 2% GC-Doped-(Ca3Co4Ga0.0001Ox) Interlayer. IEEE Transactions on Electron Devices, 65; 3901-3908.
  • Nicollian EH, Brews JR, 1982. Metal-Oxide-Semiconductor (MOS) Physics and Technology. Wiley, New York-ABD.
  • Nicollian EH, Goetzberger A, 1965. MOS Conductance Technique for Measuring Surface State Parameters. Applied Physics Letters, 7; 216-219.
  • Nicollian EH, Goetzberger A, 1967. The Si-SiO2 Interface - Electrical Properties as Determined by the Metal-Insulator-Silicon Conductance Technique. The Bell System Technical Journal, 46; 1055-1133.
  • Nikravan A, Badali Y, Altındal Ş, Uslu İ, Orak İ, 2017. On the Frequency and Voltage-Dependent Profiles of the Surface States and Series Resistance of Au/ZnO/n-Si Structures in a Wide Range of Frequency and Voltage. Journal of Electronic Materials, 46; 5728-5736.
  • Orak İ, Koçyiğit A, 2016. The Electrical Characterization Effect of Insulator Layer between Semiconductor and Metal. Iğdır University journal of the Institute of Science and Technology, 6; 57-67.
  • Padma R, Sreenu K, Rajagopal Reddy V, 2017. Electrical and frequency dependence characteristics of Ti/polyethylene oxide (PEO)/p-type InP organic-inorganic Schottky junction. Journal of Alloys and Compounds, 695; 2587-2596.
  • Reddy MSP, Lee J-H, Jang J-S, 2013. Frequency dependent series resistance and interface states in Au/bio-organic/n-GaN Schottky structures based on DNA biopolymer. Synthetic Metals, 185-186; 167-171.
  • Reddy V N, Padma R, Gunasekhar K R, 2018. Analysis of electronic parameters and frequency-dependent properties of Au/NiO/n-GaN heterojunctions. Applied Physics A, 124; 79.
  • Tanrıkulu EE, Altındal Ş, Azizian-Kalandaragh Y, 2018. Preparation of (CuS–PVA) interlayer and the investigation their structural, morphological and optical properties and frequency dependent electrical characteristics of Au/(CuS–PVA)/n-Si (MPS) structures. Journal of Materials Science: Materials in Electronics, 29; 11801–11811.
  • Tanrıkulu H, Tataroğlu A, Tanrıkulu EE, Büyükbaş Uluşan A, 2018. Electrical characterization of MIS diode prepared by magnetron sputtering. Indian Journal of Pure and Applied Physics, 56; 142-148.
  • Taşçıoğlu İ, Tan S O, Yakuphanoğlu F, Altındal Ş, 2018. Effectuality of Barrier Height Inhomogeneity on the Current-Voltage-Temperature Characteristics of Metal Semiconductor Structures with CdZnO Interlayer. Journal of Electronic Materials, 47; 6059-6066.
  • Tecimer H, Tan S O, Altındal Ş, 2018. Frequency-Dependent Admittance Analysis of the Metal–Semiconductor Structure with an Interlayer of Zn-Doped Organic Polymer Nanocomposites. IEEE Transactions on Electron Devices, 65; 231-236.
  • Tecimer H, Uslu H, Alahmed Z A, Yakuphanoğlu F, Altındal Ş, 2014. On the frequency and voltage dependence of admittance characteristics of Al/PTCDA/p-Si (MPS) type Schottky barrier diodes (SBDs). Composites Part B, 57; 25-30.
  • Yakuphanoğlu F, 2008. Analysis of interface states of metal-insulator-semiconductor photodiode with n-type silicon by conductance technique. Sensors and Actuators A: Physical, 147; 104-109.
  • Yücedağ İ, 2009. On the Density Distribution Profiles of Interface States in Al/SiO2/p-Si (MIS) Structures. e-Journal of New World Sciences Academy, 4; 518-526.