Silisyum Karbür İle Güçlendirilmiş Kompozit Üretimi ve Mekaniksel Özellliklerinin Araştırılması

Bu çalışmada, mikrodalga sinterleme tekniği kullanılarak daha düşük enerji maliyeti ve iyi mekaniksel ve fiziksel özellikler elde edilmesi amaçlanmıştır. Bakır matriks tozları 4,8,12,16,20%SiC katkısı yapılarak güçlendilrilmiştir. Numuneler endüstriyel mikrodalga sinterleme fırını kullanılarak 1000°C, 1050°C ve 1100°C sıcaklıklarda argon atmosferinde 1 saat sürede sinterlenmişlerdir. Üretilen numunelere Taramalı Elektron Mikroskobu, X-Ray Difraksiyonu, mekaniksel test ve ölçümler uygulanarak numuneler karakterize edilmiştir. Numunelere uygulanan test ve bulgular sonucunda 1000 °C de sinterlenen Cu + 10% + 4% SiC kompozisyonuna ait numunler daha iyi özelliklere sahip olduğu belirlenmiştir. Bu kompozisyona ait Sertlik değeri 128HV olarak ölçülmüştür. CuCr intermetaliğine SiC katkısı aşınma ve korozyon direncini arttırmıştır.

Investigation of the Production and Mechanical Properties of Silicon Carbide-Reinforced Composites

In this study, it was aimed to produce an intermetallic with low energy cost and better mechanical and physical properties with the microwave sintering method. Cupper matrix composites containing 4,8,12,16, and 20%SiC were fabricated by microwave furnace sintering at 1000°C, 1050°C, and 1100°C temperatures. Compounds formation between Cu–%10Cr and SiC powders was observed after sintering under Argon atmosphere. XRD, Scanning Electron Microscope, mechanical testing, and measurements were employed to characterize the properties of Cu + %10Cr ++4%SiC, Cu + %10Cr +8%SiC, Cu + %10Cr +12%SiC, Cu + %10Cr +16%SiC, and Cu + %10Cr +20%SiC composite specimens. The results of the test data applied to the samples were examined. For composite samples of Cu + 10% + 4% SiC composition at 1000 ° C, the hardness value was measured as 128 HV. The ceramic additive was made to increase the wear and corrosion resistance of the intermetallics.

___

  • Celikyurek I, Korpe NO, Olcer T, Gurler R, 2011. Microstructure, properties and wear behaviors of (Ni3Al)p reinforced Cu matrix composites. J Mater Sci Technology, 27: 937–43.
  • Batawi E, Morris DG, Morris MA, 1990. Effect of small alloying additions on behaviour of rapidly solidified Cu–Cr alloys. Materials Science and Technology, 6 (9), 892-899
  • Ergin N, Ozdemir O, 2014. Characterization of CoTi Intermetallic Materials Produced by Electric Current Activated Sintering, Acta Physica Polonica A, 125: 399-401.
  • Khereddine AY, Larbi FH, Azzeddine H, Baudin T, Brisset F, Helbert AL, Mathon MH, Kawasaki M, Bradai D, Langdon TG, 2013. Microstructures and textures of a uNi-Si alloy processed by high-pressure torsion. J Alloys Comp, 574: 361–367.
  • Lee JY, Jung E, Lee S, Park WJ, Ahn S, Kim NJ, 2000. Microstructure and properties of titanium boride dispersed Cu alloys fabricated by spray forming, Mater. Sci.Eng. A, 277: 274-283.
  • Li JW, Zhang HL, Zhang Y, Che ZF, Wang XT, 2015. Microstructure and thermal conductivity of Cu/diamond composites with Ti-coated diamond particles produced by gas pressure infiltration. J Alloy Compd, 647: 941-956.
  • Liu DG, Mai YJ, Sun J, Luan ZJ, Shi WC, Luo LM, Lia H, Wu YC, 2017. Surface metallization of Cu/Ni/Au coatings on diamond/Cu composite materials for heat sink application. Ceram Int ,43:131-139.
  • Pilavachi PA, Chatzimouratidis AI, 2009. Technological, economic and sustainability evaluation of power plants using the Analytic Hierarchy Process. Energy Policy, 37(3) : 778-787.
  • Sahani P, Suhrit M, Roy PK, Kangc PC, Kochc CC, 2011. Structural investigation of vacuum sintered Cu–Cr and Cu–Cr–4% SiC nanocomposites prepared by mechanical alloying,” Materials Science and Engineering A, 528: 7781–-7789.
  • Pilavachi PA, Chatzimouratidis AI, 2008. Multicriteria evaluation of power plants impact on the living standard using the analytic hierarchy process. Energy Policy, 36(3) : 1074-1089.
  • Pilavachi PA, Stephanidis DS, Pappas VA, Afgan NH, 2009. Multi-criteria evaluation of hydrogen and natural gas fuelled power plant technologies. Applied Thermal Engineering, 29 (12): 2228-2234.
  • Kumar R, Sahni V, 2016. Experimental Study on Aluminium Based Alloys with Dispersed Intermetallic Compound (Al2CuMg) for Industrial Applications. International Journal of Chemical Engineering and Applications, 7 (4): 226-229.
  • Tjong SC, Lau KC, 2000. Abrasive wear behavior of TiB2 particle reinforced copper matrix composites, Mater. Sci. Engineerig, 282: 183-186.
  • Tu JP, Rong W, Guo SY, Yang YZ, 2003. Dry sliding wear behavior of in situ Cu–TiB2 nanocomposites against medium carbon steel. Wear, 255: 832–835.
  • Stoloff NS, 1993. Toughening Mechanisms in Intermetallics”, Metallurgical Trans. A, 24: 561-566.
  • Uzun M, Usca A, 2018. Effect of Cr particulate reinforcements in different ratios on wear performance and mechanical properties of Cu matrix composites. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40 (197): 1-9.
  • Uzun M, Munis MM, Usca UA, 2018. Different ratios CrC particle-reinforced Cu matrix composite materials and investigation of wear performance. Journal of Engineering Research and Application, 8 (7): 1-7.
  • Lee YF, Lee SL, 1999. Effects of Al additive on the mechanical and physical properties of silicon reinforced copper matrix composites. Scripta Mater, 7 : 773-778.
  • Wang ZQ, Zhong YB, Cao GH, Wang C, Wang J, Ren WL, Lei ZS, Ren ZM, 2009. Influence of dc electric current on the hardness of thermally aged Cu-Cr-Zralloy. J. Alloys Compounds, 479: 303-309.
  • Zhang Y, Chai Z, Volinsky AA, Tian BH, Sun HL, Liu P, Liu Y, 2016. Processing maps for the Cu-Cr-Zr-Y alloy hot deformation behavior. Mater Sci Enginering, 662: 320-329.