Yb/p-Si Schottky Diyotlarının Elektriksel Karakteristiklerinin İncelenmesi

Yb/p-Si Schottky diyotları termal buharlaştırma yöntemiyle imal edilmiştir. Bu diyotların akım-gerilim (I-V) ve kapasitans-gerilim (C-V) ölçümleri karanlıkta ve oda sıcaklığında alınmıştır. I-V verileri kullanılarak idealite faktörü (n), sıfır-beslem engel yüksekliği (bo) ve seri direnç (Rs) parametreleri hesaplanırken C-2-V karakteristiğinden Fermi enerji seviyesi (EF), alıcı atomların yoğunluğu (NA) ve engel yüksekliği [Фb(C-V)] gibi bazı elektriksel parametreler hesaplanmıştır. Doğru beslem I-V karakteristiklerinden n değeri 1.59 olarak hesaplanırken bo değeri 0.75 eV olarak hesaplanmıştır. C-2-V karakteristiğinden EF, NA ve Фb(C-V) değerleri, sırasıyla, 0.15 eV, 5.27×1015 cm-3 ve 0.67 eV olarak bulunmuştur. Ayrıca, n, Фb ve Rs değerleri Cheung ve Norde fonksiyonlarından da elde edilmiştir. Elde edilen bulgulara göre, Yb/p-Si Schottky diyotlarının düşük sızıntı akımına, iyi bir doğrultma oranına ve yüksek engel yüksekliğine sahip olması, Yb’un kaliteli Schottky diyot elde etmek için cazip bir element olduğunu göstermiştir.

Investigation of Electrical Characteristics of Yb/p-Si Schottky Diodes

Yb/p-Si Schottky diodes were fabricated by thermal evaporation method. The measurements of current-voltage (I-V) and capacitance-voltage (C-V) of these diodes were carried out at room temperature and dark. The parameters such as ideality factor (n), zero-bias barrier height (Φbo) and series resistance (Rs) of these diodes were obtained by using I-V data whereas some electrical parameters such as Fermi energy level (EF), density of acceptor atoms (NA) and barrier height [Фb(C-V)] were calculated by using C-2-V characteristics. The value of n was calculated as 1.59 while the value of Φbo was determined as 0.75 eV from forward bias I-V characteristic. The values of EF, NA ve Фb(C-V) were obtained as 0.15 eV, 5.27×1015 cm-3 and 0.67 eV from C-2-V characteristic, respectively. Also, the values of n, Фb and Rs were calculated from the functions of Cheung and Norde. According to the findings, Yb/p-Si Schottky diodes have low leakage current, good rectifier rate and high barrier height. These results showed that Yb is an attractive element to obtain high quality Schottky diode.

___

  • Akkılıç A, Türüt A, Çankaya G, Kılıçoğlu T, 2003. Correlation between Barrier Height and Ideality Factors of Cd/n-Si and Cd/p-Si Schottky Barrier Diodes. Solid State Communications, 125, 551-556.
  • Altındal Ş, Dökme İ, Bülbül M M, Yalçın N, Serin T, 2006. The Role of the Interface Insulator Layer and Interface States on the Current-Transport Mechanisms of Schottky Diodes in Wide Temperature Range. Microelectronic Engineering, 83, 499-505.
  • Ayyıldız E, Türüt A, Efeoğlu H, Tüzemen S, Sağlam M, Yoğurtçu Y K, 1996. Effect of Series Resistance on the Forward Current-Voltage Characteristics of Schottky Diodes in the Presence of Interfacial Layer. Solid-State Electronics, 39(1), 83-87.
  • Bilkan Ç, Gümüş A, Altındal Ş, 2015. The Source of Negative Capacitance and Anomalous Peak in the Forward Bias Capacitance-Voltage Cr/p-Si Schottky Barrier Diodes (SBDs). Materials Science in Semiconductor Processing, 39, 484-491.
  • Bohlin K E, 1986. Generalized Norde Plot Including Determination of the Ideality Factor. Journal of Applied Physics, 60, 1223.
  • Card H C, Rhoderick E H, 1971. Studies of Tunnel MOS Diodes I. Interface Effects in Silicon Schottky Diodes. Journal of Physics D: Applied Physics, 4, 1589-1601.
  • Chen J, Ku T C, Li M F, Chin A, 2012. Investigation of Schottky Junction and MOS Technology for III-V Compound Semiconductor MOSFET Application. 12th International Workshop on Junction Technology, Shanghai, May 14-15, 2012.
  • Cheung S K, Cheung N W, 1986. Extraction of Schottky Diode Parameters from Forward Current-Voltage Characteristics. Applied Physics Letters, 49 (2), 85.
  • Çankaya G, Uçar N, 2004. Schottky Barrier Height Dependence on the Metal Work Function for p-Type Si Schottky Diodes. Verlag der Zeitschriftfur Naturforschung, 795-798.
  • Çetin H, Şahin B, Ayyıldız E, Türüt A, 2005. Ti/p-Si Schottky Barrier Diodes with Interfacial Layer Prepared by Thermal Oxidation. Physica B, 364, 133-141.
  • Das M, Kumar A, Mandal B, Htay M T, Mukherjee S, 2018. Impact of Schottky Junctions in the Transformation of Switching Modes in Amorphous Y2O3-Based Memristive System. Journal of Physics D: Applied Physics, 51, 315102 (10pp).
  • Dobrescu D, Rusu A, Udrea F, Dobrescu L, 2001. Image Force Effect on Forward Characteristic of a Rectifier Metal-Semiconductor Contact. IEEE, DOI: 10.1109/SMICND.2001.967500.
  • Ejderha K, Karabulut A, Türkan N, Türüt A, 2017. The Characteristic Parameters of N/n-6H-SiC Devices Over a Wide Measurement Temperature Range. Silicon, 9, 395-401.
  • Güllü Ö, Aydoğan S, Türüt A, 2008. Fabrication and Electrical Characteristics of Schottky Diode Based on Organic Material. Microelectronic Engineering, 85, 1647-1651.
  • Karabulut A, Efeoğlu H, Türüt A, 2017. Influence of Al2O3 Barrier on the Interfacial Electronic Structure of Au/Ti/n-GaAs Structures. Journal of Semiconductors, 38, 054003(10p).
  • Karataş Ş, Altındal Ş, 2005. Zn/p-Si Schottky Diyotlarda Temel Elektriksel Parametrelerin Sıcaklığa Bağlı İncelenmesi. Kahramanmaraş Sütçü İmam Üniversitesi Fen ve Mühendislik Dergisi, 8(1), 26-30.
  • Kınacı B, 2017. Effect on the Electrical Characterizations of Temperature and Frequency Depending on Series Resistance and Interface States in MS Structure. Journal of Polytechnic, 20(2), 313-318.
  • Kundu S, Kumar A, Banerjee S, Banerji P, 2012. Electrical Properties and Barrier Modification of GaAs MIS Schottky Device Based on MEH-PPV Organic Interfacial Layer. Materials Science in Semiconductor Processing, 12, 386-392.
  • Lapa H E, Kökce A, Al-Dharob M, Orak İ, Özdemir A F, Altındal Ş, 2017. Interfacial Layer Thickness Dependent Electrical Characteristics of Au/(Zn- Doped PVA)/n-4H-SiC (MPS) Structures at Room Temperature. The European Physical Journal Applied Physics, 80, 10101 (8p).
  • Neamen D A, 2003. Semiconductor Physics and Devices: Basic Principles. McGraw-Hill Companies, pp. 326-359, New York.
  • Nicollian E H, Brews J R, 1982. MOS (Metal Oxide Semiconductor) Physics and Technology. John Wiley and Sons, pp. 71-235, New York.
  • Norde H, 1979. A Modified Forward I-V Plot for Schottky Diodes With High Series Resistance. Journal of Applied Physics, 50 (7), 5052-5053.
  • Reddy V R, Rao L D, Janardhanam V, Kang M S, Choi C J, 2013. Electrical Properties and Interface States of Rare-Earth Metal Ytterbium Schottky Contacts to p-Type InP. Material Transactions, 54 (12), 2173-2179.
  • Reinhardt K C, Singh A, Anderson A, 1988. Ytterbium Metal-Insulator-Semiconductor Contacts to Indium Phosphide. Solid-State Electronics, 31 (10), 1537-1539.
  • Rhoderick E H, Williams R H, 1988. Metal-Semiconductor Contacts. Clarendon Press, pp. 89-179, New York. (2. Baskı).
  • Sağlam M, Ayyıldız E, Gümüş A, Türüt A, Efeoğlu H, Tüzemen S, 1996. Series Resistance Calculation for the Metal-Insulator-Semiconductor Schottky Barrier Diodes. Applied Physics A, 62, 269-273.
  • Soylu M, 2011. The Effect of Thickness of Organic Layer on Electronic Properties of Al/Rhodamine B/p-Si Structure. Materials Science in Semiconductor Processing, 14, 212-218.
  • Takami Y, Shiraishi F, Hosoe M, 1984. Evaluation of Various Electrode Metals Ultra-High Purity p-Type Si Surface Barrier Detectors. IEEE Transactions on Nuclear Science, 31(1); 340-343.
  • Taşçıoğlu İ, Farooq W A, Turan R, Altındal Ş, Yakuphanoğlu F, 2014. Charge Transport Mechanisms and Density of Interface Traps in MnZnO/p-Si Diodes. Journal of Alloys and Compounds, 590, 157-161.
  • Tataroğlu A, Altındal Ş, 2006. Characterization of Current-Voltage (I-V) and Capacitance-Voltage-Frequency (C-V-f) Features of Al/SiO2/p-Si (MIS) Schottky Diodes, Microelectronic Engineering, 83, 582-588.
  • Tecimer H, 2018. Al/PVA (Zn-katkılı)/p-Si (MPS) Yapılarda Organik Arayüzey Tabaka Kalınlığının ve Seri Direncin C-G/-V Karakteristikleri Üzerine Etkisi. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, 6(3), 680-690.
  • Temirci C, Gülcan M, Göksen K, Sönmez M, 2010. Ohmic and Rectifier Properties of Al/Ligand(N-APTH) and Al/Cu(II)Complex Contacts. Microelectronic Engineering, 87, 2282-2287.
  • Uslu Tecimer H, Alper M A, Tecimer H, Tan S O, Altındal Ş, 2018. Integration of Zn-doped Organic Polymer Nanocomposites between Metal Semiconductor Structure to Reveal the Electrical Qualifications of the Diodes. Polymer Bulletin, 75, 4257-4271.
  • Werner J, Levi A F J, Tung R T, Anzlowar M, Pinto M, 1987. Origin of the Excess Capacitance at Intimate Schottky Contacts. Physical Review Letters, 60, 53-56.