FARKLI KEMİKLER FARKLI ELEMENT BİRİKİMLERİ: NEOLİTİK DÖNEM TEPECİK-ÇİFTLİK İNSAN KEMİKLERİNDE GÖMÜ SONRASI ELEMENT BİRİKİMLERİ

Bu çalışmada Niğde ili sınırları içerisinde yer alan Tepecik-Çiftlik arkeolojik alanından elde edilen ve Neolitik döneme tarihlendirilmiş 25 bireye ait kaburga ile el ve ayak tarak kemiklerinde element birikimleri analiz edilmiştir. Kaburga ile el ve ayak parmak kemiklerinde tespit edilen element miktarları ile aynı bireylere ait femur örnekleri karşılaştırılarak, örneklerin gömü sonrası geçirdiği kimyasal değişimleri arasındaki benzerlik ve farklılıklar değerlendirilmiştir. Arkeolojik toplulukların beslenme biçiminin araştırıldığı çalışmalarda kemik korunma durumunun ölçütü olan elementlere bakıldığında, örneklerin tümünde toprak ile element değişimleri olduğu tespit edilmiş, değişimin kaburgalarda diğer kemiklere kıyasla daha yüksek olduğu görülmüştür. Çalışmanın amaçlarından bir diğeri, arkeolojik beslenme çalışmalarında sıklıkla önerilen femur örneklerine, yapısal özellikleri nedeniyle benzerlik gösteren el ve ayak tarak kemiklerinin alternatif olup olamayacağını araştırmaktır. Element içerikleri açısından femur ve tarak kemiklerinde farklılıklar görülmüştür. Tarak kemiklerindeki element birikimlerinde zirkonyumun etkisinin yüksek olduğu tespit edilmiştir. Bu sonuç örneklerin hazırlık aşamasındaki süreçlerin femur ve tarak kemikleri içerisindeki element miktarlarının farklılaşmasında etkili olduğu yönünde yorumlanmıştır.

___

  • Arıhan, Seda Karaöz, Et Al. "Beybağ-Muğla (Türkiye) Bizans Dönemi İskeletlerinin Element Analizi." Tuba-Ar 21.2 (2017).
  • Bıçakçı, E., Altınbilek, Algül, Ç., Balcı, S, Godon M. (2007). Tepecik-Çiftlik. In: M. Özdoğan & N. Başgelen (Eds.), Türkiye’de Neolitik Dönem. İstanbul: Arkeoloji ve Sanat Yayınları, pp.237-253.
  • Bıçakçı, E., Godon, M., Çakan, Y.G. (2012). Tepecik-Çiftlik. In: M. Özdoğan, N. Başgelen & P. Kuniholm (Eds.) The Neolithic in Turkey (Vol 3), New excavations & New Research, Central Turkey. İstanbul: Archaeology and Art Publications, pp.89-134.
  • Bıçakçı, E. (2016). Tepecik-Çiftlik Höyüğü (Niğde) Kazısı Işığında Orta Anadolu Tarihöncesi Kültürleri ile İlgili Yeni Bir Değerlendirme. TUBA-AR, 4(1).
  • Buikstra, J.E. and Ubelaker, D.H. (1994). Standards for data collection from human skeletal remains. Arkansas Archeological Survey Research Series No. 44, Arkansas.
  • Buikstra, J. E., Frankenberg, S., Lambert, J. B. Li-ang Xue (1989). Multiple elements: multiple expectations. In The Chemistry of Prehistoric Bone (Price, TD), Cambridge University Press, pp: 155-210.
  • Burton, J. (2008). “Bone Chemistry and Trace Element Analysis.” Biological Anthropology of the Human Skeleton, Second Edition. Eds. by M. Anne Katzenberg and Shelley R. Saunders. John Wiley & Sons, Inc.
  • Burton, J. H., & Price, T. D. (2002). The use and abuse of trace elements for paleodietary research. In Biogeochemical approaches to paleodietary analysis (pp. 159-171). Springer, Boston, MA.
  • Büyükkarakaya, A.M., Akyol, A.A., Özdemir, K. (2017). Tepecik-Çiftlik Neolitik topluluğunda sütten kesme sürecinin incelenmesi. Hitit Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, Yıl 10, Sayı 1: 169-196.DOI: http://dx.doi.org/10.17218/hititsosbil.306223.
  • Büyükkarakaya A.M., Erdal Y.S. 2014. New Data on Mortuary Practices from the Early Pottery Neolithic Site of Tepecik-Çiftlik, Central Anatolia. European Association of Archaeologists 20th Annual Meeting, September, 10-14, İstanbul, Turkey.
  • Büyükkarakaya, A. M., Akyol, A. A., & Özdemir, K. (2017). Investigation of weaning process in the neolithic period Tepecik-Çiftlik population. Hitit University Journal of Social Sciences Institute, Year, 10, 169-196.
  • Carvalho, M. L., & Marques, A. F. (2008). Diagenesis evaluation in Middle Ages human bones using EDXRF. X‐Ray Spectrometry: An International Journal, 37(1), 32-36.
  • Carvalho, M. L., Casaca, C., Pinheiro, T., Marques, J. P., Chevallier, P., & Cunha, A. S. (2000). Analysis of human teeth and bones from the chalcolithic period by X-ray spectrometry. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 168(4), 559-565.
  • Carvalho, M.L., Marquesa, A.F., Lima, M.T., Reuse, U. (2004). Trace elements distribution and post-mortem intake in human bones from Middle Age by total reflection X-ray fluorescence. Spectrochim. Acta B, 59, 1251-1257.
  • Çakan, Y.G. (2013). Tepecik-Çiftlik Son Neolitik Dönem Mimarisi. İstanbul (Unpublished MA thesis).
  • Çırak, M., & Akyol, A. (2014). Kilikya Toplumu İskeletlerinde Kurşun (Pb) Düzeyleri. Hitit Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 7(1), 36-47.
  • Edward, J.B., Benfer, R.A. (1993). The effect of diagenesis on the Paloma skeletal material. In Sandford MK (ed): Investigation of Ancient Human Tissue: Chemical Analyses in Anthropology. Phidelphia: Gordon and Breach.
  • Ezzo, J. A. (1994). Zinc as a paleodietary indicator: an issue of theoretical validity in bone-chemistry analysis. American Antiquity, 59(4), 606-621.
  • Ezzo, J. A. (1994b). Putting the" chemistry" back into archaeological bone chemistry analysis: modeling potential paleodietary indicators. Journal of anthropological archaeology, 13(1), 1-34.
  • Ezzo, J. A., Larsen, C. S., & Burton, J. H. (1995). Elemental signatures of human diets from the Georgia Bight. American Journal of Physical Anthropology, 98(4), 471-481.
  • Farnum, J., Sandford, M.K. (2008). "Trace Element Analysis." Encyclopedia of Archaeology 3; 2134-2156.
  • Guimaraes, D., Dias, A. A., Carvalho, M., Carvalho, M. L., Santos, J. P., Henriques, F. R., ... & Pessanha, S. (2016). Quantitative determinations and imaging in different structures of buried human bones from the XVIII-XIXth centuries by energy dispersive X-ray fluorescence–Postmortem evaluation. Talanta, 155, 107-115.
  • Güner, C., Aliyev, V., Atamtürk, D., Duyar, İ. & Söylemezoğlu, T. (2011). Retention of Zn, Cu, Cd, Pb, and As on human bones unearthed at a Central Anatolian Early Bronze Age excavation site (Resuloğlu, Turkey). Eurasian Journal of Anthropology, 2(1), 27-39.
  • Güner, C., Türksoy, V. A., Atamtürk, D., & Duyar, İ. (2012). Adramytteion (Örentepe, Balıkesir) Erken Bizans dönemi insan iskeletlerinin kimyasal analizi. İnsanbilim Dergisi, 1(2), 81-93.
  • Hancock, R. G. V., Grynpas, M. D., & Pritzker, K. P. H. (1989). The abuse of bone analyses for archaeological dietary studies. Archaeometry, 31(2), 169-179.Hedges, R.E.M. (2002). Bone diagenesis: an overview of processes. Archaeometry 44 (3), 319–328.
  • Hedges, R.E.M., Millard, A.R. (1995). Measurements and relationships of diagenetic alteration of bone from three archaeological sites. Journal of Archaeological Science, 22, 201-209.
  • Hill, P.A. (1998). Bone remodeling. Br. J. Orthod, 25, 101-107.
  • İşcan, M. Y., Loth, S. R., & Wright, R. K. (1984). Age estimation from the rib by phase analysis: white males. Journal of Forensic Science, 29(4), 1094-1104.
  • İşcan, M. Y., Loth, S. R., & Wright, R. K. (1985). Age estimation from the rib by phase analysis: white females. Journal of Forensic Science, 30(3), 853-863.
  • János, I., Szathmáry, L., Nadas, E., Beni, A., Dinya, Z., & Mathe, E. (2011). Evaluation of elemental status of ancient human bone samples from Northeastern Hungary dated to the 10th century AD by XRF. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 269(21), 2593-2599.
  • Jurkiewicz, A., Wiechuła, D., Nowak, R., Gaździk, T., & Loska, K. (2004). Metal content in femoral head spongious bone of people living in regions of different degrees of environmental pollution in Southern and Middle Poland. Ecotoxicology and Environmental Safety, 59(1), 95-101.
  • Kini, U., & Nandeesh, B. N. (2012). Physiology of bone formation, remodeling, and metabolism. In Radionuclide and hybrid bone imaging (pp. 29-57). Springer, Berlin, Heidelberg.
  • Klepinger, L.L. (1984). Nutritional assessment from bone. Annual Review Anthropology, 13: 75–96. Krogman WM and İşcan MY. 1986. The Human Skeleton in Forensic Medicine. Charles C. Thomas: Illinois.
  • Klepinger, L. L., Kuhn, J. K., & Williams, W. S. (1986). An elemental analysis of archaeological bone from Sicily as a test of predictability of diagenetic change. American Journal of Physical Anthropology, 70(3), 325-331.
  • Kyle, J.H. (1986). Effect of post-burial contamination on the concentrations of major and minor elements in human bones and teeth. The implications for palaeodietary research. Journal of Archaeological Science, 13, 403–16.
  • Lambert, J. B., Vlasak, S. M., Thometz, A. C., & Buikstra, J. E. (1982). A comparative study of the chemical analysis of ribs and femurs in Woodland populations. American Journal of Physical Anthropology, 59(3), 289-294.
  • Loth SR and İşcan MY. (1989). Morphological assessment of age in the adults: the thoracic region. In Age Markers in Human Skeleton. İşcan MY (ed.). Charles C. Thomas: Illinois; 105-136.
  • Meindl, R. S., & Lovejoy, C. O. (1985). Ectocranial suture closure: a revised method for the determination of skeletal age at death based on the lateral‐anterior sutures. American journal of physical anthropology, 68(1), 57-66.
  • Özdemir, K. (2008). İkiztepe Tunç Çağı Topluluğunda Element Analiziyle Beslenme Yapısının Belirlenmesi. Hacettepe Üniversitesi, Yayınlanmamış Doktora Tezi, Ankara.
  • Özdemir, K., Erdal, Y.S., Demirci, Ş. (2010). Arsenic accumulation on the bones in the Early Bronze Age İkiztepe Population, Turkey. Journal of Archaeological Science, 37 (5); 1033–1041. https://doi.org/10.1016/j.jas.2009.12.004.
  • Özdemir, K., Akyol, A.A. & Büyükkarakaya, A. M. (2017). Dietary Changes across the Neolithic Levels of the Tepecik-Çiftlik Population Tepecik-Çiftlik Topluluğunun Neolitik Dönem Tabakaları Boyunca Beslenme Değişimleri. Gaziantep University Journal of Social Sciences, 594-610. DOI: 10.21547/jss.312067.
  • Özdemir, K., Akyol, A. A., İren, K., & Erdal, Y. S. (2018) Investigations of Osteobiography of the Koru Tumulus Skeletons by Elemental Analysis. Gaziantep University Journal of Social Sciences, 17(3), 740-760.
  • Parker, R.B., Toots, H. (1970). Minor Elements in Fossil Bone. Geological Society of America Bulletin, 81, 925-932.
  • Pate, F. D. (1994). Bone chemistry and paleodiet. Journal of Archaeological Method and Theory,1(2), 161-209.
  • Pate, F. D., Hutton, J. T., & Norrish, K. (1989). Ionic exchange between soil solution and bone: toward a predictive model. Applied Geochemistry, 4(3), 303-316.
  • Pollard M., C. Batt, B. Stern, S.M. M.Young (2007). Analytical Chemistry in Archaeology. Cambridge Manuals in Archaeology. Cambridge University Press.
  • Salmon, M.E. (1970). An X-Ray Fluorescence Method for Micro-Samples, IIC-American Group Technical Papers from 1968 through 1970; IIC-American Group: New York, 31-46.
  • Sandford, M.K. (1992). A reconsideration of trace element analysis in prehistoric bone. In: Katzenberg, M.A., Saunders, S.R. (Eds.), Biological Anthropology of the Human Skeleton. New York: Wiley-Liss, pp.79-103.
  • Sillen, A., & Kavanagh, M. (1982). Strontium and paleodietary research: a review. American Journal of Physical Anthropology, 25(S3), 67-90.
  • Stipisic, A., Versic-Bratincevic, M., Knezovic, Z., & Sutlovic, D. (2014). Metal content in medieval skeletal remains from Southern Croatia. Journal of archaeological science, 46, 393-400.
  • Turner-Walker, G. (2008). The chemical and microbial degradation of bones and teeth. Advances in human palaeopathology, 592.
  • Underwood, E.J. (1977). Trace Elements in Human and Animal Nutrition. Academic Press.
  • Zapata, J., Perez-Sirvent, C., Martinez-Sanchez, M.J., Tovar, P. (2006). Diagenesis, not biogenesis: two late Roman Empire skeletal examples. Sci. Total Environ, 369 (1-3), 357-368.
  • Zimmerman, H. A., Meizel-Lambert, C. J., Schultz, J. J., & Sigman, M. E. (2015). Chemical differentiation of osseous, dental, and non-skeletal materials in forensic anthropology using elemental analysis. Science & Justice, 55(2), 131-138.