Biomass, leaf nitrogen and potassium concentration of maize grown in soils with various salinity levels in Harran Plain

Sera koşullarında, Harran ovasında farklı seviyelerde tuz içeren farklı toprak serileri, Akçakale (EC: 11.6-28.58 dS m-1), Ekinyazi (EC: 1.95 - 5.39 dS m-1), Cepkenli (EC: 0.49 - 1.40 dS m-1) ve Harran'da (EC: 0.54 - 1.40) kısa dönemli bir deneme yapılmıştır. Toprak örnekleri üç farklı derinlikte (0-20, 20-40 ve 40-60 cm) ve dört farklı zamanda (Şubat, Mayıs, Ağustos ve Kasım) alınmıştır. Farklı toprak derinliğinden alınan toprak örnekleri borular içerisine doldurulmuştur. Çalışmanın amacı farklı tip ve farklı tuz (EC 0.49 - 28.58 dS m-1) içeren toprakların mısır (Zea mays L. cv. Dramca) bitkisinin gelişimi üzerine etkisini belirlemektir. Yüksek tuz içeren Akçakale toprak serisinde, diğer üç toprak serileriyle karşılaştırıldığında, bitki gelişmesi azalmıştır. Akçakale toprak serisinde gelişen bitkilerin yapraklarında, diğer toprak serileriyle karşılaştırıldığında daha düşük azot ve potasyum ile yüksek Na bulunmuştur. Akçakale toprak serisinde yetişen mısır bitkisinin gelişmesindeki azalma bu bitkinin yapraklarındaki düşük N ve K ile yüksek Na nedeniyle olabilir sonucuna varılabilinir.

Harran Ovasında farklı düzeylerde tuz içeren topraklarda yetişen mısırın, biyokitlesi, yapraktaki azot ve potasyum konsantrasyonu

A short term experiment was carried out under greenhouse conditions using different soil types from Harran plains; Akçakale (EC: 11.6 - 28.58 dS m-1), Ekinyazi (EC: 1.95 - 5.39 dS m-1), Cepkenli (EC: 0.49 - 1.40 dS m-1), and Harran (EC: 0.54 - 1.40), having various salinity levels. The soil samples were taken at three different depths (0-20, 20-40 and 40-60 cm) and in four periods (February, May, August and November). The soil samples taken from different soil depth were filled in tubes. The aim of the study was to assess the effects of different soil types having different salinity levels (i.e. EC ranging 0.49 to 28.58 dS m-1) on maize (Zea mays L. cv. Dramca) growth. The plant growth was suppressed in the Akcakale soil having high salinity levels compared to the other three soil types. Lower concentrations of nitrogen and potassium while higher concentration of sodium were found in the leaves of plants grown in the Akcakale soil than those plants grown in other soil types. It can be concluded that reduction in the growth of plants grown in Akcakale soil may be due to the combined effects of lower concentrations of K and N and excess accumulation of Na in the plant leaves.

___

  • Allison, L.E. 1965. Organic carbon "In: Methods of Soils Analysis. (Ed.) C.A. Black, Part 2, Agronomy Series, No: 9, American Society of Agronomy, Wisconsin Series, 1367-1378."
  • Allison, L.E. and Moode, C.D. 1965. Carbonate "In: Methods of Soils Analysis. (Ed.) C.A. Black, Part 2, Agronomy Series, No: 9, American Society of Agronomy, Wisconsin Series, 1379-1396."
  • Al-Rawahy, S.A., Stroehlein, J.L. and Pessa-rakli, M. 1992. Dry matter yield and nitro-gen-15, Na, Cl and K content of tomatoes under sodium chloride stress. Journal of Plant Nutrition, 15,341-358.
  • Ashraf, M. and Hans, P.J.C. 2004. Potential biochemical indicators of salinity tolerance in plants. Plant Science, 166, 3-16.
  • Botella, M.A., Martinez, V., Pardines, J. and Cerda, A. 1997. Salinity induced potassium deficiency in maize plants. Journal of Plant Physiology, 150, 200-205.
  • Bouyoucus, G.J. 1951. A recalibration of the hydrometer for making mechanical analysis of soils. Agronomy Journal, 43 434-438.
  • Cerda, A. and Martinez, V. 1988. Nitrogen fertilization under saline conditions in tomato and cucumber plants. Journal Horticulture Science, 63(3), 451-458.
  • Chapman, H. and Pratt, P.F. 1961. Methods of Analysis for Soils, Plants, and Waters. University of California, Division of Agricultural Sciences, Riverside, California, USA. 309 p.
  • Chow, W.S., Ball, M.C. and Anderson, J.M. 1990. Growth and photosynthetic responses of spinach to salinity: Implication of K nutrition for salt tolerance. Australian Journal of Plant Physiology, 17 563-578.
  • Classen, N.E. and Wilcox, G. 1974. Comparative reduction of calcium and magnesium composition of corn tissue by NH4-N and K fertilization. Agronomy Journal, 66, 521522.
  • Cram, W.J. 1973. Internal factors regulating nitrate and chloride influx in plant cells. Journal of Experimental Botany, 24, 328341.
  • Cramer, G.R., Basset, R.A and Seeman, J.R.
  • 1990. Salinity-calcium interactions on root growth and osmotic adjustment of two corn cultivars differing in salt tolerance. Journal of Plant Nutrition, 13(11), 1453-1462.
  • Cuartero, J and Fernandez-Munoz, R. 1999. Tomato and salinity. Scientia Horticulturae, 78, 83 125.
  • Feigin, A., Pressman, E. Imas, P. and Milta, O.
  • 1991. Combined effects of KNO3 and salinity on yield and chemical composition of lettuce and Chinese cabbage. Irrigation Science, 12 223-230.
  • Graifenberg, A., Giustiniani, L. Temperini, O. and Lipucci di Paola, M. 1995. Allocation of Na, Cl, K and Ca within plant tissues in globe artichoke (Cynara scolimus L.) under sali-ne-sodic conditions. Science of Horticulture, 63, 1-10. Grattan, S.R. and Grieve, C.M. 1999. Salinity-mineral nutrient relations in horticultural crops. Scientia Horticulturae, 78, 127-157.
  • Irshad M., Yamamoto, S., Eneji, A.E., Endo, T. and Honna, T. 2002. Urea and manure effect on growth and mineral contents of maize under saline conditions. Journal of Plant Nutrition, 25(1), 189-200.
  • Jacoby, B. 1994. Mechanisms involved in salt tolerance by plants. "In: (Ed.) M. Pessarakli, Handbook of Plant and Crop Stress, Marcel Dekker, New York, 97-123."
  • Lopez, M.V. and Satti, S.M.E. 1996. Calcium and potassium-enhanced growth and yield of tomato under sodium chloride stress. Plant Science, 114, 19-27.
  • Luque, A.A. and Bingham, F.T. 1981. The effect of osmotic potential and specific ion concentration of nutrient solution on uptake and reduction of nitrate by barley seedlings. Plant Soil, 63, 227-237.
  • Marschner, H. 1995. Mineral Nutrition of
  • Higher Plants. Academic Press, London, 889 p.
  • Munns, R. and Termaat, A. 1986. Whole-plant responses to salinity. Australian Journal of Plant Physiology, 13, 143-160.
  • Ortas, I., Güzel, N. and îbrikçi, H. 1999 Determination of potassium and magnesium status of soils using different soil extraction procedures in the upper part of Mesopotamia (in the Harran Plain.) Communication in Soil Science and Plant Analysis, 30(19/20), 26072625.
  • Ozcan, H., Turan, M.A., Koc, O., Cikili, Y. and Taban, S. 2000. Growth and variations in proline, sodium, chloride, phosphorus and potassium concentrations of chickpea varieties under salinity stress. Turkish Journal Agriculture and Forestry, 24, 649-654.
  • Perez-Alfocea, F., Balibrea, M., Santa, E., Cruz, A. and Estan, M.T. 1996. Agronomical and physiological characterisation of salinity tolerance in a commercial tomato hybrid. Plant Soil, 180, 251-257.
  • Pessarakli, M. 1991. Dry matter yield, nitro-gen-15 absorption, and water uptake by green bean under sodium chloride stress. Crop Science, 31, 1633-1640.
  • Pessarakli, M. and Tucker, T.C.1985. Uptake of nitrogen-15 by cotton under salt stress. Soil Science Society America Journal, 49 149-152.
  • Pessarakli, M. and Tucker, T.C. 1988a. Nitro-gen-15 uptake by eggplant under sodium chloride stress. Soil Science Society America Journal, 52 1673-1676.
  • Pessarakli, M. and Tucker, T.C. 1988b. Dry matter yield and nitrogen-15 uptake by tomatoes under sodium chloride stress. Soil Science Society America Journal, 52, 698700.
  • Richards, L.A. 1954. Diagnosis and improvement of saline and alkali soils. U.S. Agriculture Handbook, No: 60, 159 p.
  • Salim, M. 1991. Comparative growth responses and ionic relations of four cereals during salt stress. Journal of Agronomy and Crop Science, 66(3), 204-209.
  • Shannon, M.C. and Grieve, C.M. 1999. Tolerance of vegetable crops to salinity. Scientia Horticulturae, 78, 5-38.
  • Song, J.Q. and Fujiyama, H. 1996a. Difference in response of rice and tomato subjected to sodium salinization to the addition of calcium. Soil Science and Plant Nutrition, 42, 503-510.
  • Song, J.Q. and Fujiyama, H. 1996b. Ameliorative effect of potassium on rice and tomato subjected to sodium salinization. Soil Science and Plant Nutrition, 42, 493-501.
  • Yeo, A.R. 1983. Salinity resistance: Physiologies and prices. Physiology of Plant, 214222.
Harran Üniversitesi Ziraat Fakültesi Dergisi-Cover
  • ISSN: 1300-6819
  • Yayın Aralığı: Yılda 4 Sayı
  • Yayıncı: İbrahim TOBİ
Sayıdaki Diğer Makaleler

Desing and outcome of genetic predictions for growth and development of Tribolium castaneum across divarse environments: I. genetic groups in animal model

Seyrani KONCAGÜL, Philip Jeffrey BERGER

Design and outcome of genetic predictions for growth and development of tribolium castaneum across diverse environments: II. Response to selection

Seyrani KONCAGÜL, Philip Jeffrey BERGER

Harran Ovasında yüzeyaltı drenaj sistemi kurulmuş alanlarda drenaj suyu ve toprak tuzluğunun mevsimsel değişimi

İdris BAHÇACİ, Mehmet Nur BAL

Gluten indeks değeri ve yaş gluten/Protein oranı ile ekmeklik buğday kalite değerlendirmesi

Mehmet KÖTEN, Hasan KILIÇ, Ayhan ATLI, Mehmet MENDERİS

Diyarbakır koşullarında bazı ot tipi İngiliz çimi (Lolium perenne L.) çeşitleri üzerinde bir araştırma

Mehmet BAŞBAĞ

Kök-ur nematodları (Meloidogyne spp.) Goeldi,1877 (Tylenchida: Heteroderidae)'nın biyolojik savaşımı

M. Emel ÖKTEN, Ayşe Nur TAN

Kımıl (Aelia rostrata Boh., Het.: Pentatomidae)'ın yumurta parazitoidleri ve farklı dönemlerde uygulanan insektisitlerin bu parazitoidlere etkisi

Erhan KOÇAK, Atilla GÖKDOĞAN, Numan BABAROĞLU

Biomass, leaf nitrogen and potassium concentration of maize grown in soils with various salinity levels in Harran Plain

İbrahim ORTAŞ, Aytül YILDIRIM, Ahmet ALMACA, M. Ali ÇULLU, Cengiz KAYA

The effects of different harvest times and packaging types on fruit quality of Cydonia oblongo cv. "Eşme"

F. Cem KUZUCU, Mustafa SAKALDAŞ