SICAKLIK STRESİ ALTINDAKİ ÇİLEK BİTKİLERİNDE H2O2 VE PEROKSİDAZ AKTİVİTESİNDEKİ DEĞİŞİMLER

Yüksek sıcaklık stresinin etkileri, yüksek sıcaklığa tolerant ve hassas olan Redlands Hope (R. Hope) ve Cal-Giant 3 (CG3) çilek çeşitlerinde araştırılmıştır. Bitkilerden alınan yaprak örneklerikademeli olarak 35, 40, 43, 46, 49, 52, 55 ve 60°C sıcaklıklara maruz bırakılıp “kademeli yüksek sıcaklık stresi” oluşturulmuştur. Ayrıca, bitkilerden alınan yaprak örnekleri “şok yüksek sıcaklık stresi” oluşturmak amacıyla doğrudan bu sıcaklıklara maruz bırakılmışlardır. Her bir sıcaklık uygulamasında iyon sızıntısı, hidrojen peroksit (H2O2) ve peroksidaz (PRX) aktivitesiincelenmiştir. Kademeli ve şok yüksek sıcaklık uygulamalarının her ikisinde de iyon sızıntısı ve H2O2 miktarının CG3 çeşidinde R.Hope’a gore daha yüksek olduğu belirlenmiştir. NativePAGE’de 60ºC haricindeki bütün sıcaklıklarda bazik bir peroksidaz bandı tespit edilmiştir. Belirlenen bandın yoğunluğunun CG3’te R.Hope’a gore daha yüksek olduğu görülmüştür. Sonuçta, yüksek sıcaklığa tolerant olan R.Hope’da PRX aktivitesinin düşük olmasına rağmen, H2O2 birikiminin ve hücresel zararlanmanın da düşük olması, diğer savunma sistemleri ileilişkilendirilmiştir

CHANGES IN H2O2 AND PEROXIDASE ACTIVITIES IN STRAWBERRY PLANTS UNDER HEAT STRESS

Effects of heat stress were investigated in two strawberry cultivars, Redlands Hope (R. Hope) andCal-Giant 3 (CG3), which are heat-tolerant and heat-sensitive, respectively. Collected leaves fromthe grown plants were exposed to high temperature increased gradually to 35, 40, 43, 46, 49, 52,55 and 60 ° C to impose a “gradual heat stress” (GHS). Additional leaves collected from the plantswere also exposed directly to each temperature, to impose a “shock heat stress” (SHS). Electrolyteleakage, hydrogen peroxide (H2O2) and peroxidase (PRX) activity were evaluated fallowing eachtemperature. The electrolyte leakage and H2O2 levels were found higher in CG3 than R. Hope inboth GHS and SHS treatments. A basic PRX band was observed in all treatments except 60ºC onnative PAGE with different intensities. The intensities of the band were generally higher in CG3than R. Hope. In conclusion less H2O2 accumulation and cellular damage in heat tolerant cv. R.Hope in spite of less PRX activity can be correlated with the effects of other defense systems

___

  • Arora, A., Sairam, R.K. and Srivastava, G.C.
  • Oxidative stress and antioxidative
  • system in plants. Current Science, 82
  • (10):1227-1238.
  • Arora, R., Pitchay, D.S. and Bearce, B.C. 1998.
  • Water-stress-induced heat tolerance in
  • geranium leaf tissues: a possible linkage
  • through stres proteins. Phsiol. Plant.,
  • : 24-34.
  • Chaitanya, K.V., Sundar, D., Masilamani, S.
  • and Reddy, A.R. 2002. Variation in heat
  • stres-induced antioxidant enzyme
  • activities among three mulberry
  • cultivars. Plant Growth Regul., 36: 175-
  • -
  • Davis, B.J. 1964. Disc electrophoresis. Method
  • and application to human serum
  • proteins. Ann. NY. Acad. Sci., 121: 404-
  • -
  • Foyer, C.H., Descourvieres. P. and Kunert, K.
  • Protection against oxygen
  • radicals: important defence mechanisms
  • studied in transgenic plants. Plant Cell
  • Environ., 17: 507-523.
  • Premachandra, G.S., Saneoka, H., Fujita, K.
  • and Ogata, S. 1992. Leaf water
  • relations, osmotic adjustment, cell
  • membrane stability, epi-cuticular wax
  • load and growth as affected by
  • increasing water deficits in Sorghum, J.
  • Exp. Bot., 43: 1569-1576.
  • Gaspar, T.H., Penel, C.L., Thorpe, T. and
  • Grappin, H. 1982. Peroxidases a survey
  • of their biochemical and physiological
  • roles in higher plants. Unıversıté De
  • Genève Press., Genève. pp. 10-60.
  • Gulen, H., Arora, R., Kuden, A., Krebs, S.L.
  • and Postman, J. 2002. Peroxidase
  • isozyme profiles in compatible and
  • incompatible pear-quince graft
  • combinations. J. Amer. Soc. Hort. Sci.,
  • : 152-157.
  • Gulen, H. and Eris, A. 2003. Some
  • physiological changes in strawberry
  • (Fragaria x ananassa cv. Camarosa)
  • plants under heat stres. J. Hort. Sci.,
  • Biotech. 78: 894-898.
  • Gulen, H. and Eris, A. 2004. Effect of heat
  • stress on peroxidase activity and total
  • protein content in strawberry plants.
  • Plant Sci., 166: 739-744.
  • Chen, H.H., Shen, Z.V. and Li, P.H. 1982.
  • Adaptability of crop plants to high
  • temperature stress. Crop Sci., 22:719-
  • -
  • Havaux, M. 1993. Rapid photosynthetic
  • adaptation to heat stress triggered in
  • potato leaves by moderately elevated
  • temperatures. Plant Cell Environ., 16:
  • -467.
  • Howarth, C.J. 2005. Genetic improvements of
  • tolerance to high temperature.
  • “Alınmıştır: Abiotic Stresses: Plant
  • Resistance Through Breeding and
  • Molecular Approaches. (Eds.) Ashraf,
  • M., Haris, P.J.C. Howarth Pres. Inc.,
  • NewYork.”
  • Huystee, R.B.V. 1987. Some molecular aspects
  • of plant peroxidase biosynthetic studies.
  • Annu. Review Plant Physiol. 38: 205-
  • -
  • J.Agric.Fac.HR.U., 2012,16(1) Ergin et al.
  • -
  • Jeffrey, A.A. 2002. Catalase activity, hydrogen
  • peroxide content and thermotolerance of
  • pepper leaves. Sci. Hort., 95: 277–284.
  • Kesici, M. 2009. High Temperature Tolerance
  • of Some Strawberry (Fragaria 
  • ananassa) Cultivars. (In Turkish with
  • English summary). MSc Thesis, Uludag
  • Univ. Inst. Natural Sci.,Bursa, Turkey.
  • p.
  • Kesici, M., Ergin, S., Gulen, H., Turhan, E.,
  • Ipek, A. and Koksal, N. 2012. Heatstress
  • tolerance of some strawberry
  • (Fragaria x ananassa) cultivars.
  • Outlook Agr. (in press).
  • Kocsy, G., Szalai, G., Sutka, J., Paldi, E. and
  • Galiba, G. 2004. Heat tolerance together
  • with heat stress-induced changes in
  • glutathione and hydroxyl methyl
  • glutathione levels is affected by
  • chromosome 5A of wheat. Plant Sci.,
  • : 451-458.
  • Mazorra, L.M., Nunez, M., Hechavarria, M.,
  • Coll, F. and Sanchez-Blanco, M.J. 2002.
  • Influence of brassinosteroids on
  • antioxidant enzymes activity in tomato
  • under different temperatures, Biol.
  • Plant., 45: 593-596.
  • Ledesma, N.A., Kawabata, S. and Sugiyama,
  • N. 2004. Effect of high temperature on
  • protein expression in strawberry plants.
  • Biol. Plant., 481: 73-79.
  • Ledesma, N.A., Nakata, M. and Sugiyama, N.
  • Effect of high temperature stress
  • on the reproductive growth of
  • strawberry cvs. ‘Nyoho’ and
  • ‘Toyonoka’. Sci. Hort., 116: 186-193.
  • Lester, G.E. 1985. Leaf cell membrane
  • thermostabilities of Cucumis melo. J.
  • Amer. Soc. Hort. Sci., 110: 506- 509.
  • Liu, X. and Huang, B. 2000. Heat stress injury
  • in relation to membrane lipid
  • peroxidation in creeping bentgrass.
  • Crop Sci., 40: 503-513.
  • Manganaris, A.G. and Alston, F.H. 1992.
  • Inheritance and linkage relationships of
  • peroxidase isozymes in apple. Theor
  • .Appl. Genet., 83:392-399.
  • Nakano, Y. and Asada, K. 1981. Hydrogen
  • peroxide is scavenged by ascorbatespecific
  • peoxidase in spinach
  • chloroplasts. Plant Cell Physiol., 22:
  • -880.
  • Ngo, T.T. and Lenhoff, H.M. 1980. A sensitive
  • and versatile chromogenic assay for
  • peroxidase and peroxidase-coupled
  • reactions. Analytical Biochem.,
  • :389-397.
  • Okuda, T., Matsuda, Y., Yamanaka, A. and
  • Sagisaka, S. 1991. Abrupt increase in
  • level of hydrogen peroxide in leaves of
  • winter wheat is caused by cold
  • treatment. Plant Physiol., 97:1265-
  • -
  • Reisfeld, R.A., Lewis, U.J. and Williams, D.E.
  • Disk electrophoresis of basic
  • proteins and peptides on polyacrylamide
  • gels. Nature., 195: 281-283.
  • Rivero, R.M., Ruiz, J.M. and Romero, L. 2003.
  • Influence of temperature on biomass,
  • iron metabolism and some related
  • bioindicators in tomato and watermelon
  • plants. J. Plant Physiol., 160: 1065-
  • -
  • Saelim, S. and Zwiazek, J.J. 2000. Preservation
  • of thermal stability of cell membranes
  • and gas exchange in high temperatureacclimated
  • Xylia xylocarpa seedlings,
  • J.Plant Phsiol., 156: 380-385.
  • Sairam, R.K., Srivastava, G.C. and Saxena,
  • D.C. 2000. Increased antioxidant
  • activity under elevated temperature: a
  • mechanism of heat stress tolerance in
  • wheat genotypes. Biol. Plant., 43: 245–
  • -
  • Wahid, A., Gelani, S., Ashraf, M. and Foolad,
  • M.R. 2007. Heat tolerance in plants: an
  • overview. Environ. Exper. Botany.,
  • :199-223.
  • Walter, M.H. 1992. Regulation of lignification
  • in defense. “Alınmıştır: Plant Gene
  • Research: Genes Involved in Plant
  • Defense. (Eds) Boller, T., Meins, F.
  • Springer, Vienna, pp 327-352”
  • Wang, S.Y. and Lin, H.S. 2006. Effect of plant
  • growth temperature on membrane lipids
  • in strawberry (Fragaria × ananassa
  • Duch.). Scienta Hort., 108: 35-42
  • Wang, S.Y. and Zheng, W. 2001. Effect of
  • plant growth temperature on antioxidant
  • capacity in strawberry. J. Agric. Food
  • Chem., 49: 4977–4982.
  • Wendel, J.F. and Weeden, N.F. 1989.
  • Visualization and interpretation of plant
  • isozymes. “Alınmıştır: Isozymes in
  • Plant Biology, (Eds.) Soltis, D.E. and
  • Soltis, P.S. Dioscorides Press, Portland,
  • Oregon, pp. 5-44”
  • Xu, S., Li, J., Zhang, X., Wei, H. and Cui, L.
  • Effects of heat acclimation
  • pretreatment on changes of membrane
  • lipid peroxidation, antioxidant
  • metabolites, and ultrastructure of
  • chloroplasts in two cool-season
  • turfgrass speciaes under heat stress.
  • Environ. Exper. Botany., 56: 274-285.
  • J.Agric.Fac.HR.U., 2012,16(1) Ergin et al.
  • -
  • Yin, H., Chen, Q. and Yi, M. 2008. Effects of
  • short-term heat stress on oxidative
  • damage and responses of antioxidant
  • system in Lilium longiflorum. Plant
  • Growth Regul., 54:45–54.
  • Yoshida, K., Kaothien, P., Matsui, T.,
  • Kawaoka, A. and Shinmyo, A. 2003.
  • Molecular biology and application of
  • plant peroxidase genes. Appl Microbiol
  • Biotech,. 60:665–670.
  • Zhau, R.G., Fan, Z.H., Li, X.Z., Wang, Z.W.
  • and Han, W. 1995. The effect of heat
  • acclimation on membrane thermostability
  • and reactive enzyme activity.
  • Acta Agron. Sin., 21:568–572.