Preservice Elemantary Mathematics Teachers' Level of Relating Mathematical Concepts in Daily Life Contexts

Bu çalışmada ilköğretim matematik öğretmeni adaylarının matematiksel kavramlarla günlük yaşamı ilişkilendirme düzeyleri incelenmiştir. İlköğretim matematik öğretmeni adaylarının matematiksel kavramlarla günlük yaşamı ilişkilendirme düzeyinin belirlenip bu düzeylerinin okudukları yıla ve akademik ortalamaya göre incelenmesi ve bu matematiği günlük yaşamla ilişkilendirme düzeyi ile matematiğe karşı öz yeterlik arasında bir ilişki olup olmadığının ortaya konması araştırmanın iki problemidir. Çalışmaya 194 ilköğretim matematik öğretmeni adayı katılmıştır. Matematiksel kavramlar ve günlük yaşam arasındaki ilişkilendirmeyi ölçmek için araştırmacı tarafından bir ölçek ve bu ölçeği değerlendirmek için de dereceli puanlama anahtarı geliştirilmiştir. Analiz sonuçlarına göre, ilköğretim matematik öğretmeni adaylarının matematiksel kavramlar ile günlük yaşamı ilişkilendirme düzeylerinin okudukları öğretim yılına göre artış gösterdiği söylenebilir. Bunun yanısıra öğretmen adaylarının matematiğe karşı öz yeterlikleri ile matematiksel kavramları günlük yaşamla ilişkilendirme düzeyleri arasında bir ilişki bulunmuştur.

İlköğretim Matematik Öğretmeni Adaylarının Matematiği Günlük Yaşamla İlişkilendirme Düzeyleri

The purpose of this study was to investigate preservice elementary mathematics teachers’ ability of relating mathematical concepts and daily life context. Two research questions were set; what is the preservice elementary mathematics teachers’ level of relating mathematical concepts and daily life context regarding to their education year and their Grade Point Average? and is there a relationship between preservice elementary mathematics teachers’ level of relating mathematical concepts and daily life context and their self efficacy towards mathematics? A survey research was designed with 194 preservice elementary mathematics teachers. A scale and its rubric were developed. Data analyses revealed that preservice mathematics teachers’ level of relating mathematical concepts in daily life context is increased throughout their year of education. Furthermore all participants were found as efficacious towards mathematics and a correlation was captured between their self efficacy towards mathematics and level of relating mathematics in daily life context.

___

  • Adler, J., (1998). Lights and limits: Recontextualising Lave and Wenger to theorise knowledge of teaching and of learning school mathematics. In Watson, A. (Ed.) Situated Cognition and the Learning of Mathematics. Centre for Mathematics Education Research. University of Oxford, Department of Educational Studies. Oxford. 161-177.
  • Aşkar, P. & Umay, A. (2001). Preservice elementary mathematics teachers’ computer self-efficacy, attitudes towards computers, and their perceptions of computer-enriched learning environments. In C. Crawford et al. (Eds.), Proceedings of Society for Information Technology and Teacher Education International Conference 2001 (pp. 2262-2263). Chesapeake, VA: AACE.
  • Bandura, A. (1977). Self-efficacy: Toward a unifying theory of behavioral change. Psychological Review. 84, 191-215.
  • Barab, S. A., (1999). "Ecologizing" instruction through integrated units, Middle School Journal, 30, 21-28.
  • Brown, J. S., Collins, A., & Duguid, P., (1989). Situated cognition and the culture of learning. Educational Researcher, 18,1,32-42.
  • Carraher-Nunes, T., Carraher, D. W., & Schliemann, A. D. (1985). Mathematics in the streets and in schools. British Journal of Developmental Psycholog, 3, 21-29.
  • Erturan, D. (2007). 7. sınıf öğrencilerinin sınıf içindeki matematik başarıları ile günlük hayatta matematiği fark edebilmeleri arasındaki ilişki. Yayınlanmamış yüksek lisans tezi. Hacettepe Üniversitesi, Ankara.
  • Green, S. B., Salkind, N. J., & Akey, T. M. (2000). Using SPSS for Windows: Analyzing and Understanding Data (2nd edition). Prentice-Hall, Inc.: New Jersey.
  • Greeno, J. G. (2004). Situative research relevant to standards for school mathematics. In J. Kilpatrick, W. G. Martin & D. Schifter (Eds.). A Research Companion to Principles and Standards for School Mathematics (pp. 304-333). Reston:NCTM.
  • Guberman, S. R. (2004). A comparative study of children’s out-of-school activities and arithmetical achievements. Journal for Research in Mathematics Educatio, 35(2),117-150.
  • Hall, M. (2002). A comparative analysis of mathematics self-Efficacy of developmental and non-developmental freshman mathematics students. Presented in Meeting of Louisiana/Mississippi Section of the Mathematics Association of America:USA.
  • Herrington, J. & Oliver R., (1999). Using situated learning and multimedia to investigate higher-order thinking. Journal of Educational Multimedia and Hypermedia, 8(4), 401-421.
  • Fraenkel J. R. & Wallen, N. E. (1996) How to Design and Evaluate Research in Education (3rd edition), McGraw Hill, Inc.USA.
  • Kelly, C. (2001). Creating advocates: Building preservice teachers’ confidence using an integrated, spiral-based, inquiry approach in mathematics and science methods instruction. Action in Teacher Education, 23(3), 75-83.
  • Koirala, H. P. & Bowman, J. K., (2003). Preparing middle level preservice teachers to integrate mathematics and science: Problems and possibilities. School Science and Mathematics, 103(3), 145-154.
  • Lane, S. (1993). The conceptual framework for the development of a mathematics assessment instrument for QUASAR. Educational Measurement: Issues and Practice 12, 16-23.
  • Lave, J. & Wenger, E., (1991). Situated Learning-Legitimate Peripheral Participation. Cambridge University Press, UK.
  • Lovery, N. V. (2000). Construction of teacher knowledge in context: Preparing elementary teachers to teach mathematics and science. School Science and Mathematics. 102(2), 69-83.
  • Masingila, J. O., Davidenko, S., & Prus-Wisniowska, E. (1996). Mathematics learning and practice in and out of school: A framework for connecting these experiences. Educational Studies in Mathematics, 31, 175-200.
  • MEB (2005a). İlköğretim matematik dersi öğretim programı ve kılavuzu (1- 5. Sınıflar). Ankara: Devlet Kitapları Basımevi.
  • MEB (2005b). İlköğretim matematik dersi öğretim programı ve kılavuzu (6-8. Sınıflar). Ankara: Devlet Kitapları Basımevi.
  • Morris, R. M., (2003). A guide to curricular integration. Phi Delta Kappan, Summer 2003.
  • Mousley, J. (2004). An aspect of mathematical understanding: The notion of “connected knowing”. In M. J. Hoines & A. B. Fuglestad (Eds.), Proceedings of the 28th conference of the International Group for the Psychology of Mathematics Education 3,377-384. Bergen, Norway: Bergen University College.
  • National Council of Teachers of Mathematics (NCTM) (2000). Principles and Standards for School Mathematics. Reston, VA: NCTM Publications.
  • Nunes, T., Schliemann, A., & Carraher, D. (1993). Street Mathematics and School Mathematics. Cambridge University Press: New York.
  • Skemp, R. R. (1976). Relational understanding and instrumental understanding. Mathematics Teaching, 77, 20-26.
  • Stevens, T., Olivárez, A., Jr., Lan, W., & Tallent-Runnels, M.K. (2004). The role of mathematics self-efficacy and motivation in mathematics performance: Issues across ethnicity. Journal of Educational Research, 97, 208-221.
  • Tirosh, D. (2000). Enhancing prospective teachers’ knowledge of children’s conceptions: The case of division of fractions. Journal for Research in Mathematics Education, 31(1),5-25.
  • Umay, A. (2001). İlköğretim matematik öğretmenliği programının matematiğe karşı özyeterlik algısına etkisi. Journal of Qafqaz University, 8.
  • Yenilmez, K. ve Uysal, E. (2007). İlköğretim öğrencilerinin matematiksel kavram ve sembolleri günlük hayatla ilişkilendirme düzeyi. Ondokuz Mayıs Üniversitesi Eğitim Fakültesi Dergisi. 24, 89-98.
  • Wiggins, G., (1990). The case for authentic assessment. Practical Assessment, Research & Evaluation, 2,2.
  • Wiggins, G. & McTighe, J., (1998). Understanding by design. New Jersey: Merril Prentice Hall.