Minimum Sample Size for Cronbach's Coefficient Alpha: A Monte-Carlo Study

Eğitimsel ve psikolojik çalışmalarda birleşik ölçmelerin güvenirliğinin hesaplamasında yaygın olarak Cronbach (1951) tarafından geliştirilen alfa katsayısı kullanılmaktadır. Ancak bu tür çalışmalarda veri toplamanın zorluğu nedeniyle alfa katsayısı için gerekli olan minimum örneklem genişliği tartışma konusudur. Evren alfa katsayısının sağlam kestirimi için gerekli olan minimum örneklem genişliği için farklı öneriler vardır. Bu çalışmanın sonuçlarına göre; yansız ve tutarlı bir alfa kestirimi örneklem genişliğinin büyüklüğü kadar aynı zamanda ölçmelerin birinci özdeğerinin büyüklüğüne bağlıdır. Buna göre, birinci özdeğer büyüdükçe, düşük örneklem genişliklerinde alfa katsayısının yansız bir kestirimi olanaklıdır. Bu çalışmada kullanılan simulasyonlar bootstrap tekniği ile birlikte Monte-Carlo yöntemi üzerine kurulmuştur.

Cronbach Alfa Katsayısı İçin Minimum Örneklem Genişliği: Monte-Carlo Çalışması

The coefficient alpha is the most widely used measure of internal consistency for composite scores in the educational and psychological studies. However, due to the difficulties of data gathering in psychometric studies, the minimum sample size for the sample coefficient alpha has been frequently debated. There are various suggested minimum sample sizes for the robust estimate of the population coefficient alpha. This research indicates that the performance of an estimator of the coefficient alpha depends not only on the sample size but also on the largest eigenvalue of the sample data set. Thus, when the largest eigenvalue increases, unbiased estimation of the population coefficient alpha is possible, even though the sample size is small. The simulations in this study were based on Monte-Carlo method with bootstrap technique.

___

  • Armor, D. J. (1974). Theta reliability and factor scaling. In Costner, H. L. (ed.), Sociological Methodology. Jossey-Bass, San Francisco. 17−50.
  • Box, G. E. P., & Muller, M. E. (1958). A note on the generation of random normal deviates. Annals of Mathematical Statistics 29: 610–611.
  • Charter, R. A. (1999). Sample Size Requirements for Precise Estimates of Reliability, Generalizability, and Validity Coefficients. Journal of Clinical and Experimental Neuropsychology, 21, 559-566.
  • Charter, R.A. (2003). Study Samples Are Too Small to Produce Sufficiently Precise Reliability Coefficients. The Journal of General Psychology, Vol. 130, 117-129.
  • Cortina, J. M. (1993). What is coefficient alpha? An examination of theory and applications. Journal of Applied Psychology, 78 (1), 98-104.
  • Crano, W D., & Brewer, M. B. (1973). Principles of research in social psychology. New York: McGraw-Hill.
  • Cronbach, L.J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika,16, 297-334.
  • Cronbach, L. J. (2004). My current thoughts on coefficient alpha and successor procedures. Educational and Psychological Measurement, 64, 391-418.
  • Kline, P. (1986). A handbook of test construction: Introduction to psychometric design. New York: Methune & Company.
  • Liu, Y., & Zumbo, B. D. (2007). The Impact of Outliers on Cronbach’s Coefficient Alpha Estimate of Reliability: Visual Analogue Scales. Educational and Psychological Measurement, 67, 620-634.
  • MacCallum, R. C., Widaman, K. F., Zhang, S., & Hong, S. (1999). Sample size in factor analysis. Psychological Methods, 4,84-99.
  • Nunnally, J.C.&Bernstein, I.H. (1994). Psychometric theory (3rd ed.). Neew York: McGraw-Hill.
  • Peterson, R.A. (1994) A meta-analysis of Cronbach's coefficient alpha. Journal of Consumer Research 21, 381-391.
  • Raykov, T. (1997). Scale reliability, Cronbach's coefficient alpha, and violations of essential tau-equivalence with fixed congeneric components. Multivariate Behavioral Research, 32, 329-353.
  • Segall, D. O. (1994). The reliability of linearly equated tests. Psychometrika, 59, 361-375.
  • van Zyl, J. M., Neudecker, H., & Nel, D. G. (2000). On the distribution of the maximum likelihood estimator of Cronbach’s alpha. Psychometrika, 65, 271-280.
  • Yuan, K., & Bentler, P. M. (2002). On robustness of the normal-theory based asymptotic distributions of three reliability coefficient estimates. Psychometrika, 67(2), 251-259.
  • Yuan, K., Guarnaccia, C. A., & Hayslip, B. (2003). A study of the distribution of the sample coefficient alpha with the Hopkins Symptom Checklist: Bootstrap versus asymptotics. Educational and Psychological Measurement, 63, 5- 23.
  • Yurdugul, H. (In press). SIMREL: A software for the coefficient alpha and its confidence intervals with Monte Carlo studies, Applied Psychological Measurement. DOI: 10.1177/0146621608322657