Investigating elementary students' learning approaches, motivational goals, and achievement in science

Bu çalışmada öğrencilerin öğrenme yaklaşımları, güdüsel hedefleri, daha önceki fen dersi başarıları ve atom teorisi ile ilgili kavramlardaki başarıları arasındaki ilişki incelenmiştir. Ayrıca cinsiyetin ve sosyodemografik değişkenlerin öğrencilerin öğrenme yaklaşımlarına, güdüsel hedeflerine ve atom teorisi ile ilgili kavramlardaki başarılarına etkisi araştırılmıştır. Çalışmanın örneklemini 416 yedinci sınıf öğrencileri oluşturmaktadır. Fen Başarı Testi (özellikle atom konusuyla ilgili kavramlar için hazırlanmış), Öğrenme Yaklaşımları Ölçeği, ve Başarı Motivasyonu Ölçeği öğrencilere uygulanmıştır. Korelasyon analizlerinin sonucuna göre öğrencilerin anlamlı öğrenme, performans oryantasyonları, ve kendine güvenleri arasında pozitif bir ilişki bulunmuştur. Öğrencilerin daha önceki fen dersi başarıları ile atom teorisi ile ilgili kavramlardaki başarıları, anlamlı öğrenme ve kendine güvenleri arasında pozitif bir ilişki bulunurken, performans oryantasyonları ve ezbere dayalı öğrenme arasında negatif bir ilişki bulunmuştur. ANOVA analizi sonuçlarına göre katılımcıların anne ve babalarının eğitim durumlarının, atom teorisi ile ilgili kavramlardaki başarıları, anlamlı öğrenme, ezbere dayalı öğrenme, ve performans oryantasyonaları yaklaşımları üzerinde anlamlı etkisi bulunmuştur.

İlkokul öğrencilerinin öğrenme yaklaşımlarının, güdüsel hedeflerinin ve fen başarılarının incelenmesi

This study examined the relationships among students’ learning approaches, motivational goals, previous science grades, and their science achievement for the concepts related to atomic theory and explored the effects of gender and sociodemographic variables on students’ learning approaches, motivational goals, and their science achievement for the concepts related to atomic theory. The sample constituted 416 seventh grade elementary students. A Science Achievement Test (specifically designed for atomic theory), A Learning Approach Questionnaire, and An Achievement Motivation Questionnaire were administered to the students. Results of the correlation analyses revealed positive relationships among meaningful learning, performance orientation, and self efficacy. Students’ previous science grades were positively correlated with achievement, meaningful learning, and self-efficacy and negatively correlated with rote learning and performance orientations. ANOVA results revealed that participants’ parents’ education level had significant effect on their achievement and meaningful learning, rote learning, and approach performance orientations.

___

  • Ames, C., & Archer, J. (1988). Achievement goals in the classroom: Student’s learning strategies and motivation processes. Journal of Educational Psychology, 80, 260-270.
  • Ausubel, D.P. (1963). The psychology of meaningful verbal learning. New York: Grune & Stratton.
  • Bandura, A. (1986). Social foundations of thought and action: A social cognitive theory. Englewood Cliffs, NJ: Prentice-Hall.
  • Boggs, O. M. (2003). Community and institutional correlates of academic achievement in Georgia schools. Research reports (ERIC Document Reproduction Service No. ED 482 910).
  • Caliskan, İ. S. (2003). The effect of inquiry-based chemistry course on students' understanding of atom concept, learning approaches, motivation, self-efficacy, and epistemological beliefs. Unpublished master thesis, The Middle East Technical University, Ankara.
  • Cavallo, A. M. L., Rozman, M., Blickenstaff, J., & Walker, N. (2003). Learning, reasoning, motivation, and epistemological beliefs. Journal of College Science Teaching, 33, 18-23.
  • Cavallo, A. M. L., Rozman, M., & Potter, W. H. (2004). Gender differences in learning constructs, shifts in learning constructs, and their relationship to course achievement in a structured inquiry, yearlong college physic course for life science majors. School Science and Mathematics, 104(6), 288-301.
  • Cavallo, A. M. L., & Schafer, L. E. (1994). Relationships between students’ meaningful learning orientation and their understanding of genetic topics. Journal of Research in Science Teaching, 31(4), 393-418.
  • DeBacker, T. K., & Nelson, R. M. (2000). Motivation to learn science: Differences related to gender, class type, and ability level. Journal of Educational Research, 93(4), 245-254.
  • Dweck, C. S. (1986). Motivational processes affecting learning. American Psychologist, 41, 1040-1048.
  • Eğitim Teknolojileri Genel Müdürlüğü. (2008). The mean scores of OKS in Turkey with respect to gender. Retrieved 11 June 2008 from http://egitek.meb.gov.tr/Sinavlar/Istatistikler/ook/ook2006/OksIlPuanOrt.pdf
  • Elliot, A. J., & Church, M. (1997). A hierarchical model of approach and avoidance achievement motivation. Journal of Personality and Social Psychology, 72, 218-232.
  • Ercikan, K., McCreith, T., & Lapointe, V. (2005). Factors associated with mathematics achievement and participation in advanced mathematics courses: An examination of gender differences from an interpersonal perspective. School Science and Mathematics, 105 (1) 5-14.
  • Greenfield, T. A. (1997). Gender and grade level differences in science interest and participation. Science Education, 81, 259-276.
  • Hortaşsu, N. (1995). Parents’ education levels, parents’ beliefs, and child outcomes. The Journal of Genetic Psychology, 156(3), 373-383.
  • Kahle, J. B., & Meece, J. (1994). Research on gender issues in the classroom. In Gabel, D. L. (Eds.), Handbook of research on science teaching and learning, pp (542-554). New York, NY: National Science Teachers Association.
  • Koran, M. L., & Koran, J. J. (1984). Aptitude- treatment interaction research in science education. Journal of Research in Science Teaching 21(8), 793-808.
  • Lin, H., Hung, J., & Hung, S. (2002). Using the history of science to promote students’ problem solving ability. International Journal of Science Education, 24(5), 453-464.
  • Millman, J., & Greene, J. (1993). The specification and development of tests of achievement and ability. In Robert Linn (Ed.), Educational measurement (pp. 335-366). Phoenix: American Council on Education and Oryx Press.
  • Nuttall, R., & Hell, R. J. (2001). Poverty, courses taken and MCAS test scores in mathematics and science. Paper presented at the Annual Meeting of the American Educational Research Association, Seattle, WA.
  • Park, E. J., & Light, G. (2009). Identifying atomic structure as a threshold concept: Students mental models and troublesomeness. International Journal of Science Education, 31(2), 133-258.
  • Pintrich, P. R. (2000). An achievement goal theory perspective on issues in motivation terminology, theory, and research. Contemporary Educational Psychology, 25, 92-104.
  • Pintrinch, P., & Schunk, D. (2002). Motivation in education. Merrill Prentice Hall.
  • Pringle, R. M. (2004). Making it visual: Creating a model of the atom. Science Activities, 40(4), 30-33.
  • Reap, M. A., & Cavallo, A. L. (1992). Students' meaningful understanding of science concepts: Gender differences. Paper presented at a poster session at the annual conference of the National Association for Research in Science Teaching, Boston, MA.
  • Simpson, R. D., & Oliver, J. S. (1990). A summary of major influences on attitude toward achievement in science among adolescent students. Science Education, 74, 1-18.
  • State Statistics Institution (2008). Gelir dağılımı 2005. Ankara, Turkish Republic State. Retrieved 11 June 2008 from http://www.tuik.gov.tr/PreHaberBultenleri.do?id=408
  • Tombul, E. (2008). The relative effects of family socio-economic characteristics on participation in education in Turkey. Eurasian Journal of Educational Research, 30, 153-168.
  • Ward, R. E., & Lee, W. D. (2006). Understanding the periodic table of elements via iconic mapping and sequential diagramming: The roundhouse strategy. Science Activities, 42(4), 11-19.
  • Woolfolk, A. (2004). Educational psychology (9th ed.). Boston, MA, Allyn & Bacon.
  • Zhang, L. (2000). University students’ learning approaches in three cultures: An investigation of Biggs’s 3P model. The Journal of Psychology, 134(1), 37-55.