Potansiyel Biyomedikal Uygulamalar için BiyopolimerYamalanmış Kopolimer İçeren PVA Nanofiberler

Çok fonksiyonlu nanofiberler matris polimer olarak polivinil alkol/oktadesilamin montmorillonit tabakalı silikat nanokompozitin ve biyouyumlu partner polimer olarak amfifilik kopolimer-g-biyopolimer’in (polilaktik asit, PLA) elektroeğrilmesi ile üretilmişlerdir. Nanofiberlerin kristal yapısı farklı kimyasal ve fiziksel arayüzey etkileşimler yoluyla ortaya çıkan in situ faz ayrımı prosesi sebebiyle önemli seviyede gelişmiştir. Nanofiberler MC3T3-E1 preosteoblast hücreleri varlığında düşük seviyede sitotoksik ve nekrotik etki sergilemişlerdir.

PVA Nanofibers Including Biopolymer-grafted Copolymer for Potential Biomedical Applications

Multifunctional nanofibers were fabricated by electrospinning of polyvinyl alcohol/octadecylamine montmorillonite layered silicate nanocomposite as a matrix polymer and amphiphilic copolymer-g-biopolymer (polylactic acid, PLA) as a biocompatible partner polymer. Crystal structure of the nanofibers significantly changed due to in situ phase separation processing via different chemical and physical interfacial interactions. Relative high thermal stability, high first melting and low crystallinity were observed for the matrix/polymer nanofibers. Nanofibers exhibit low cytotoxicity and necrotic effect for MC3T3-E1 preosteoblast cells.

___

  • Z.M.O. Rzayev, B. Şenol, B.E. Denkbaş, Functional copolymer/organo-montmorillonite nanoarchitectures. IX. Synthesis and nanostructure– morphology–thermal behaviour relationships of poly[(maleic anhydride)-alt-(acrylic acid)]/organomontmorillonite nanocomposites, Polym. Int., 60 (2011) 1446-1454.
  • P.R. Rudolf, B.G Landes, Two-dimensional X-Ray diffraction and scattering of microcrystalline and polymeric materials, Spectroscopy, 9 (1994) 22-33.
  • Z.M.O. Rzayev, K. Salimi, Ö.Eğri, E. Pişkin, Functional copolymer/organo-MMT nanoarchitectures. XIX. Nanofabrication and characterization of poly(MA-alt1-octadecene)-g-PLA layered silicate nanocomposites with nanoporous core–shell morphology, Polym. Advan. Technol., 25 (2014), 294–306.
  • Z.M.O. Rzayev, D. Erdönmez, K. Erkan, M.Şimşek, U. Bunyatova, Functional Copolymer/OrganoMMT Nanoarchitectures. XXII. Fabrication and Characterization of Antifungal and Antibacterial Poly (Vinyl Alcohol-co-Vinyl Acetate/ODA-MMT/ AgNPs Nanofibers and Nanocoatings by eSpinning and c-Spinning Methods, Int. J. Polym. Mater. PO., 64 (2015), 267–278.
  • M.A. Attawia, K.M. Herbert, C.T. Laurencin, Osteoblast-like cell adherance and migration through 3-dimensional porous polymer matrices, Biochem. Bioph. Res. Co., 213 (1995) 639-644.
  • J.C. Meredith, E.J. Amis, Lcst phase separation in biodegradable polymer blends: Poly(d,l-lactide) and poly(epsilon-caprolactone), Macromol. Chem. Phys., 201 (2000) 733-739.
  • S.T.C. Lin, D. Bhattacharyya, S. Fakirov, J. Cornish, Novel organic solvent free micro-/nano-fibrillar, nanoporous scaffolds for tissue engineering, Int. J Polym. Mater. Po., 63 (2014) 416-423.
  • L. Lin, W. Z. Gong, S. Y. Wanga, Hollow PET fibers containing silver particles as antibacterial materials, J. Text. I., 102 (2011) 419-423.
  • I.M. El-Sharbiny, S. Yahia, M.A. Messiery, M.F. Reichac, Preparation and physicochemical characterization of new nanocomposites based on -type chitosan and nano-hydroxyapatite as potential bone substitute materials, Int. J Polym. Mater. Po., 63 (2014) 213-220.
  • K.E. Strawhecker, E. Manias, Structure and properties of poly(vinyl alcohol)/Na montmorillonite nanocomposites, Chem. Mater., 12 (2000) 2943-2949.
  • H.W. Lee, M.R. Karim, H.M. Ji, Electrospinning fabrication and characterization of poly (vinyl alcohol)/montmorillonite nanofiber mats, J. Appl. Polym. Sci., 113 (2009) 1860-1867.
  • K.H. Hong, J.L. Park, I.H. Sul, J.H. Youk, T.J. Kang, Preparation of antimicrobial poly (vinyl alcohol) nanofibers containing silver nanoparticles, J. Polym. Sci. Pol. Phys., 44 (2006) 2468-2474.
  • M. Jannesari, J. Varshosaz, M. Morshed, M. Zamani, Composite poly(vinyl alcohol)/poly(vinyl acetate) electrospun nanofibrous mats as a novel wound dressing matrix for controlled release of drugs, Int. J. Nanomed., 6 (2011) 993-1003.
  • T. Galya, V. Sedlarik, I. Ku itka, R. Novotný, J. Sedla íková, P. Sáha, Antibacterial poly(vinyl alcohol) film containing silver nanoparticles: Preparation and characterization, J. Appl. Polym. Sci., 110 (2008) 3178-3185.
  • M. Kokabi, M. Sirousazar, Z.M. Hassan, PVA-clay nanocomposite hydrogels for wound dressing, Eur. Polym. J., 43 (2007) 773-781.
  • U.M. Subramanian, S.V. Kumar, N. Nagiah, U. T. Sivagnanam, Fabrication of polyvinyl alcoholpolyvinylpyrrolidone blend scaffolds via electrospinning for tissue engineering applications. Int. J Polym. Mater. Po., 63 (2014) 476-485.
  • Y. Deng, X. Zhang, Y. Zhao, S. Liang, A. Xu, X. Gao, F. Deng, J. Fang, S. Wei, Peptide-decorated polyvinyl alcohol/hyaluronan nanofibers for human induced pluripotent stem cell culture, Carbohydr. Polym., 101 (2014) 36-39.
  • J.H. Juang, S. Bonner-Weir, Y. Ogawa, J.P. Vacanti, G.C. Weir, Outcome of subcutaneous islet transplantation improved by polymer device, Transplantation, 61 (1996) 1557-1561.
  • Q. Zhuo, G. Xu, J. Wang, C. Qin, L. Dai, Poly(vinyl alcohol)/hydrotalcite composite nanofibre: preparation and characterization, Iran. Polym. J., 20 (2011) 357-365.
  • B.W. Chieng, N.A. Ibrahim, W.M.Z. Wan Yunus, Effect of organo-modified montmorillonite on poly(butylenesuccinate)/poly(butylene adipate-coterephthalate) nanocomposites, Express Polym. Lett., 4 (2010) 404-414.
  • A. Arslan, M. Şimşek, S.D. Aldemir, N.M. Kazaroğlu, M. Gümüşderelioğlu, Honey-based PET or PET/ chitosan fibrous wound dressings: effect of honey on electrospinning process, J. Biomat. Sci.-Polym. E., 25 (2014) 999-1012.
  • K.H. Hong, Preparation and properties of electrospun poly(vinyl alcohol)/silver fiber web as wound dressings, Poly. Eng. Sci., 47 (2007) 43-49.
  • B. Gupta, R. Agarwal, M.S. Alam, Textile-based smart wound dressings, Indian J. Fibre Text., 35 (2010) 174- 187.
  • D. Li, Y. Wang, Y. Xia, Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays, Nano Lett., 3 (2003) 1167-1171.
  • G. Larsen, R. Velarde-Ortiz, K. Minchow, A. Barrero, I.G. Loscertales, A method for making inorganic and hybrid (organic/inorganic) fibers and vesicles with diameter in the submicrometric and micrometric range via sol-gel chemistry and electrically forced liquid jets, J. Am. Chem. Soc, 125 (2003) 1154-1155.
  • S. Çakmak, A.S. Çakmak, M. Gümüşderelioglu, RGD-bearing peptide-amphiphile-hydroxyapatite nanocomposite bone scaffold: an in vitro study, Biomed. Mater., 8 (2013) 04501.
  • K.-U. Jeong, H.D. Chae, Lim C. II, H.K. Lee, J.-H. Ahn, C. Nah, Fabrication and characterization of electrolyte membranes based on organoclay/tripropyleneglycol diacrylate/poly(vinylidene fluoride) electrospun nanofiber composites, Polym. Int., 59 (2010) 249-255.
  • E. Manias, A. Touny, L. Wu, K. Strawhecker, B. Lu, T.C. Chung, Polypropylene/Montmorillonite Nanocomposites. Review of the synthetic routes and materials properties. Chem Mater. 13 (2001) 3516- 3523.
  • D. Merinska, Z. Malac, M. Pospisil, Z. Weiss, M. Chmielova, P. Capkova,J. Simonik, Polymer/clay nanocomposites based on MMT/ODA intercalates, Compos. Interface., 9 (2002) 529-540.
  • S.M. Nabirqudri, A.S. Roy, and M.V.N. Ambika Prasad, Electrical and mechanical properties of free-standing PMMA–MMT clay composites, J. Mater. Res., 29 (2014) 2957-2964.
  • D.H. Reneker, I. Chun, Nanometre diameter fibres of polymer, produced by electrospinning, Nanotechnology, 7 (1996) 216-223.