Voltametrik Epinefrin Tayinine Yönelik Hambeles (Myrtus communis L.) Doku Homojenatı Temelli Biyosensör Sistemi Geliştirilmesi

Farmasotik numunelerde epinefrinin (EP) voltametrik tayini için bitki dokusuna dayalı yeni bir biyosensor geliştirildi. Doku homojenatı, camsı karbon üzerinde glutaraldehit ile çapraz bağlanarak immobilize edildi. Yaban mersininde (Myrtus communis L.) bulunan polifenol oksidaz enzimleri, epinefrinin epinefrinkinon’a oksidasyonunu katalize eder. Optimize edilmiş çeşitli operasyonel parametreler altında, biyosensor 10- 100 μM aralığında doğrusal bir yanıt gösterdi. Tespit limiti (LOD), 3.2x10-6 mol L-1 (3.2 uM) (eğim başına 3σ) olarak hesaplandı. 5.0 x 10-5 mol L-1 EP’nin yedi ardışık ölçüm sonucu için göreli standart sapma (RSD) % 4.6 olarak hesaplandı. Biyosensor, 4°C’de bir fosfat tamponunda 11 gün depolandıktan sonra %70 etkinliğini muhafaza ettiği için çok iyi stabiliteye sahiptir. Bu biyosensorun uygulanabilirliği, gerçek numunelerin analizi ile gösterildi ve biyosensor tarafından elde edilen sonuçlar ile spektrofotometrik yöntemle ölçülen sonuçlar arasında iyi bir korelasyon elde edildi. Myrtle doku homojenatına dayalı biyosensor ile elde edilen bu olumlu sonuçlar, hazırlanmasının basitliği ve düşük maliyetiyle birleşti ve bu prosedürleri farmasotik ürünlerdeki EP kantifikasyonu için cazip hale getirildi.

Development of a Biosensor Based on Myrtle (Myrtus communis L.) Tissue Homogenate for Voltammetric Determination of Epinephrine

Aplant tissue based biosensor was proposed for voltammetric determination of epinephrine (EP) in pharmaceutical samples. The tissue homogenate was immobilized by crosslinking with glutaraldehyde on the glassy carbon. The polyphenol oxidase enzymes present in fibers of a myrtle tree fruits maintained high bioactivity on this biomaterial, catalyzing the oxidation of epinephrine to epinephrinequinone. Under optimize working conditions, the biosensor showed a linear response in the range of 10–100 µM. The limit of detection (LOD) was calculated as 3.2 × 10−6 mol L-1 (3.2 µM) (3σper slope). The reproducibility, expressed as the relative standard deviation (RSD) for seven consecutive determinations of 5.0 × 10-5 mol L-1 EP was 4.6%. The biosensor retained 70% activity after 11 days of storage in a phosphate buffer at 4°C. The applicability of this biosensor was demonstrated with the analysis of real samples and a good correlation was obtained between results acquired by the biosensor and those measured by spectrophotometric method. Such favorable results obtained with the myrtle tissue homogenate based biosensor, joined with the simplicity and low-cost of its preparation turns these procedures very attractive for EP quantification in pharmaceutical products.

___

  • M. Siddiq, K.D. Dolan, Characterization of polyphenol oxidase from blueberry (Vaccinium corymbosum L.), Food Chem., 218 (2017) 216–220.
  • H.S. Wang, D.Q. Huang, R. Liu, Study on the electrochemical behavior of epinephrine at a poly(3- methylthiophene)-modified glassy carbon electrode, J. Electroanal. Chem., 570 (2004) 83-90.
  • S.M. Chen, K.T. Peng, The electrochemical properties of dopamine, epinephrine, norepinephrine, and their electrocatalytic reactions on Cobalt(II) hexacyanoferrate films, J. Electroanal. Chem., 547 (2003) 179-189.
  • E. Akyilmaz, E. Dinckaya, A mushroom (Agaricus bisporus) tissue homogenate based alcohol oxidase electrode for alcohol determination in serum, Talanta, 53 (2000) 505-509.
  • S.F. Fabiana, M. Yamashita, L. Angnes, Epinephrine quantification in pharmaceutical formulations utilizing plant tissue biosensors Biosen. Bioelectr., 21 (2006) 2283–2289.
  • F. Alpat, K. Özdemir, S. Kilinc, Voltammetric determination of epinephrine in pharmaceutical sample with a tyrosinase nanobiosensor, J. Sensors. 2016 Article ID 5653975, 9 pages.
  • S. Wei, G. Song, J.M. Lin, Separation and determination of norepinephrine, epinephrine and isoprinaline enantiomers by capillary electrophoresis in pharmaceutical formulation and human serum. J. Chromatogr. A., 1098 (2005) 166–171.
  • P. Davletbaeva, M. Falkova, E. Safonova, L. Moskvin, A. Bulatov, Flow method based on cloud point extraction for fluorometric determination of epinephrine in human urine, Anal. Chim. Acta., 911 (2016) 69-74.
  • W.K. Adeniyi, A.R. Wright, Novel fluorimetric assay of trace analysis of epinephrine in human serum, Spectrochim. Acta A., 74 (2009) 1001–1004.
  • A. Kojo, E. Nalewajko, Determination of Epinephrine by Flow-Injection Analysis Using Luminol Hexacyanoferrate(III). Chemiluminescence Detection, Chem. Anal., (Warsaw), 49 (2004) 653.
  • M.A. Fotopoulou, P.C. Ioannou, Post-column terbium complexation and sensitized fluorescence detection for the determination of norepinephrine, epinephrine and dopamine using high-performance liquid chromatography, Anal. Chim. Acta. 462 (2002) 179–185.
  • M.A. Mohsin, B.D. Liu, X.L. Zhang, W.J. Yang, L.S. Liu, X. Jiang, Cellular-membrane inspired surface modification of well aligned ZnO nanorods for chemosensing of epinephrine, RSC Adv., 7 (2017) 3012-3020.
  • M. Lieberman, A. Marks, A. Peet, Marks’ Basic Medical Biochemistry: A Clinical Approach (4 ed.). Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins. p. 175. ISBN 9781608315727 2013.
  • J.S. Sidwell, G.A. Rechnitz, Progress and challenges for biosensors using plant tissue materials, Biosensors, 2 (1986) 221-233.
  • P. Solich, C.K. Polydorou, M.A. Koupparis, C.E. Efstathiou, Automated flow-injection spectrophotometric determination of catecholamines (epinephrine and isoproterenol) in pharmaceutical formulations based on ferrous complex formation, J. Pharm. Biomed. Anal., 22 (2000) 781–789.
  • P. Bougnères, C.L. Stunff, C. Pecqueur, E. Pinglier, P. Adnot, D.J. Ricquier, In vivo resistance of lipolysis to epinephrine. A new feature of childhood onset obesity, Clin. Invest., 99 (1997) 2568-2573.
  • M.H. Sorouraddin, J.L. Manzoori, E. Kargarzadeh, A. M.H. Shabani, Spectrophotometric determination of some catecholamine drugs using sodium bismuthate. J. Pharm. Biomed. Anal., 18 (1998) 877–881.
  • V. Carrera, E. Sabater, E. Vilanova, M.A. Sogorb, A simple and rapid HPLC-MS method for the simultaneous determination of epinephrine, norepinephrine, dopamine and 5-hydroxytryptamine: application to the secretion of bovine chromaffin cell cultures, J. Chromatogr. B., 847 (2007) 88–94.
  • M. Campàs, R. Carpentier, R. Rouillon, Plant tissueand photosynthesis-based biosensors, Biotechnol. Adv., 26 (2008) 370–378.