Tatlısu Mikroalgi ile Ekmek Mayası Atıksuyunun Arıtılması ve Yeşil Kimya Değerlendirmesi

Ekmek mayası prosesi çok yüksek kalitede ve miktarda su kullanımına gereksinim duyar. Bunun sonucunda dirençli KOİ (Kimyasal Oksijen İhtiyacı) gibi farklı organik kirleticileri içeren yüksek oranda kirlenmiş atık sular ortaya çıkar. Bu çalışmada Chlorella variabilis mikroalgi uygulandı ve sonuçları değerlendirildi. Deneyin amacı melastan kaynaklı besinlerle mikroalgi büyütmektir. Bunun sonucunda mikroalg büyürken atık su da temizlenecektir. Atık su numunesi 1- askıda katı madde giderimi için santrifüjlendi, 2- farklı oranlarda seyreltildi, 3- mikroalg büyümesi için inkübe edildi ve 4- büyüyen mikroalgi ayırmak için santrifüjlendi. Sonuç analizlerinde KOİ gideriminde en yüksek %93,33 oranında verim elde edildi. Bu yöntemin yeşil metot olduğu yeşil kimya prensiplerine göre yapılan değerlendirmeyle incelendi. Değerlendirme sonucunda önerilen biyoteknolojik prosesin yeşil kimyanın 8 prensibini karşıladığı görüldü.

Treatment of Baker’s Yeast Wastewater with Freshwater Microalga and Its Green Chemistry Evaluation

Baker’s yeast production processes require great amounts of high quality water, where it yields in formation of molasses wastewater and resistant COD (Chemical Oxygen Demand). The Chlorella variabilis microalgae application is studied and evaluated in this paper. The aim was to feed microalgae with the nutrients sustained by molasses; therefore, it was expected an observable growth of them and cleaning of the wastewater. Sample wastewater was 1- centrifuged to remove suspended solids, 2- diluted to various ratios, 3- incubated to grow microalgae, and 4- centrifuged to remove grown microalgae. Final analysis showed the efficiency of COD removal had been maximum 93.33%. The greenness of the method was evaluated by examining the process with respect to principles of green chemistry. It is concluded that the proposed biotechnological approach satisfies 8 principles of green chemistry.

___

  • L. Zhu, Z. Wang, Q. Shu, J. Takala, E. Hiltunen, P. Feng, Z. Yuan, Nutrient removal and biodiesel production by integration of freshwater algae cultivation with piggery wastewater treatment, Water Research 47 (2013) 4294-4302.
  • A.D. Kshirsagar, Bioremediation Of Wastewater By Using Microalgae: An Experimental Study, Int. J. LifeSc. Bt & Pharm. Res. 2 (2013) 339-346.
  • F. Widdel, Theory and measurement of bacterial growth, Bremen University, 2010.
  • P.T. Anastas, J.C. Warner, Green chemistry: theory and practice, Oxford University Press, New York, USA, 1998.
  • D. Çelik, M. Yıldız, Investigation of hydrogen production methods in accordance with green chemistry principles, Int. J. Hydrogen Energy, 42 (2017) 23395-23401.
  • I. Shihira, R.W. Krauss, Chlorella: Physiology and taxonomy of forty-one isolates, Uni. Maryland, College Park, Maryland, 1965.
  • Department of Legislation, Prime Ministry website [Online]. Available: http://mevzuat.basbakanlik.gov.tr, (12.03.2018).
  • N. Abdel-Raouf, A.A. Al-Homaidan, I.B.M. Ibraheem, Microalgae and wastewater treatment, Saudi J. Bio. Sci., 19 (2012) 257-275.
  • S. Satpal, A.K. Khambete, Wastewater treatment using microalgae – A review paper, IJETMAS, 4 (2016) 188- 192.
  • Y.F. Zeng, Z.L. Liu. Z.Z. Qin, Decolorization of molasses fermentation wastewater by SnO2-catalyzed ozonation. J. Hazard. Mater., 162 (2015) 682-687.
  • C. Tsioptsias, G. Lionta, A. Deligniannis, P. Samaras, Enhancement of the performance of a combined microalgae-activated sludge system for the treatment of high strength molasses wastewater, J. Environ. Manag., 183 (2016) 126-132.
  • M. Mischopoulou, P. Naidis, S. Kalamaras, T.A. Kotsopoulos, P. Samaras, Effect of ultrasonic and ozonation pretreatment on methane production potential of raw molasses wastewater, Renew. Energ., 96 (2016) 1078-1085.
  • L. Fan, T. Nguyen, F. Roddick, Characterisation of the impact of coagulation and anaerobic bio-treatment on the removal of chromophores from molasses wastewater, Water Res., 45 (2011) 3933-3940.
  • Y. Zhang, J. Zhu, L. Zhang, Z. Zhang, M. Xu, M. Zhao, Synthesis of EDTAD-modified magnetic baker’s yeast biomass for Pb+2 and Cd+2 adsorption, Desalination, 278 (2011) 42-49.
  • E. Yılmaz, S. Fındık, Photocatalytic treatment of baker’s yeast effluent using UV light and TiO2/ZnO composite, CBÜ Fen Bil. D., 12 (2016) 609-615.
  • Y. Xia, L. Meng, Y. Jiang, Y. Zhang, X. Dai, M. Zhao, Facile preparation of MnO2 functionalized baker’s yeast composites and their adsorption mechanism for cadmium, Chem. Eng. J., 259 (2015) 927-935.
  • A. Pala, G. Erden, Decolorization of a baker’s yeast industry effluent by fenton oxidation, J. Hazard. Mater. B, 127 (2005) 141-148.
  • T. Ünal, Ekmek mayası endüstrisi seperasyon prosesi atıksularında ozon ve ozon/hidrojen peroksit oksidasyonu ile renk giderimi, M.Sc., İTÜ., 2011.
  • S. Basu, S. Mukherjee, A. Kaushik, V.S. Batra, M. Balakrishnan, Integrated treatment of molasses distillery wastewater using microfiltrafion, J. Environ. Manag., 158(2015) 55-60.
  • G. Balcıoğlu, Z.B. Gönder, Recovery of baker’s yeast wastewater with membrane processes for agricultural irrigation purpose: Fouling characterization, Chem. Eng. J., 255 (2014) 630-640.
  • I. Koyuncu, F. Yalcın, I. Ozturk, Color removal of high strength paper and fermentation effluents with membrane technology, Water Sci. Technol. 40 (1999) 241–248.
  • D. Ildırar, S. Fındık, Effect of operational parameters on ultrasonic treatment of baker’s yeast effluent, SAÜ Fen Bil. D., 20 (2016) 185-191.
  • M. Liu, H. Zhu, B. Dong, Y. Zheng, S. Yu, C.Gao, Submerged nanofiltration of biologically treated molasses fermentation wastewater for the removal of melanoidins, Chem. Eng. J., 223 (2013) 388-394.
  • D. Ildırar, Maya endüstrisi atıksuyunun ultrases ile koyu renginin giderilmesi, M.Sc., Hitit Üniv., 2014.
  • S.H. Mutlu, U. Yetis, T. Gurkan, L. Yilmaz, Decolorization of wastewater of a baker’s yeast plant by membrane processes, Water Res., 36 (2002) 609- 616.
  • J.N. Hakizimana, B. Gourich, M. Chafi, Y. Stiriba, C. Vial, P. Drougi, J. Naja, Electrocoagulation process in water treatment: A review of electrocoagulation modeling approaches, Desalination, 404(2017) 1-21.
  • A. Rahimpour, M. Jahanshahi, M. Peyravi, Development of pilot scale nanofiltration system for yeast industry wastewater treatment, J. Environ. Health Sci., 12 55 (2014) 1–7.
  • G. Balcıoğlu, Z.B. Gönder, Recovery of baker’s yeast wastewater with membrane processes for agricultural irrigation purpose: Fouling characterization, Chem. Eng. J., 255 (2014) 630-640.
  • M. Al-Shannag, Z. Al-Qodah, K. Alananbeh, N. Bouqellah, E. Assirey, K. Bani-Melhem, COD reduction of baker’s yeast wastewater using batch electrocoagulation, Environ. Eng. and Manag. J., 13 (2014) 3153-3160.
  • E. Gengec, M. Kobya, E. Demirbas, A. Akyol, K.Oktor, Optimization of baker’s yeast wastewater using response surface methodology by electrocoagulation, Desalination, 286 (2012) 200-209.