Poli(α-Metil β-Propiolakton)’un Sentezi, Karakterizasyonu ve Biyobozunurluğu

Poli(α-metil β-propiyolakton) (PmPL) karşılık gelen laktonun anyonik halka açılması polimerizasyonu ile sentezlendi. PmPL’un yapısal karakterizasyonu FTIR, 1 H-NMR ve MALDI-MS spektrometri ile gerçekleştirildi. Polimerin termal davranışı DSC ve TGA ile incelendi. Camsı geçiş, erime ve termal bozunma sıcaklıkları sırasıyla -36.7, 95.5 ve 242.4 oC olarak belirlendi. Biyobozunma çalışmaları 37 oC de pH 7.4 fosfat tamponu (PBS), pancreatic tripsin içeren PBS ve pankreatik lipaz içeren PBS gibi üç farklı ortamda yürütüldü. Polimerin bozunma kinetiği ve mekanizması gravimetrik ölçümler ve LC-MS analizi ile takip edildi. Lipaz ve tripsin içeren tampon ortamlarında, beş haftalık peryotta % 65’e varan kütle kayıpları kaydedildi. Ortamlardan alınan kalıntıların LCMS analizi ile biyobozunmanın büyük oranda ester bağının hidrolizi üzerinden yürüdüğü belirlendi.

Synthesis, Characterization and Biodegradation of Poly(α- Methyl β-Propiolactone)

Poly(α-methyl β-propiolactone) (PmPL) was synthesized through anionic ring-opening polymerization of the corresponding lactone. Structural characterization of PmPL was performed by using FTIR, 1 H-NMR and MALDI-MS spectrometry. Thermal behavior of the polymer was investigated by using DSC and TGA. Glass transition, melting and thermal degradation temperatures of PmPL were determined as -36.7, 95.5 and 242.4 oC, respectively. Biodegradation studies were conducted at 37 oC in three different media, that is, pH 7.4 phosphate buffered saline (PBS), PBS containing pancreatic trypsin and PBS containing pancreatic lipase. The biodegradation kinetics and mechanism of the polymer were followed by gravimetric measurements and LC-MS analysis. Up to 65% mass loss in 5-week period was recorded for the buffer media in the presence of lipase and trypsin. LC-MS analysis of the residues in the media revealed that biodegradation undergoes mainly through ester bond hydrolysis.

___

  • P. Lecomte, C. Jerome, Recent Developments in RingOpening Polymerization of Lactones, Adv. Polym. Sci., 245 (2012) 173–218.
  • A. El-Hadi, R. Schnabel, E. Straube, G. Müller, S. Henning, Correlation between degree of crystallinity, morphology, glass temperature, mechanical properties and biodegradation of poly (3-hydroxyalkanoate) PHAs and their blends, Polym. Test., 21 (2002) 665–674.
  • H. Mohammed, R.E. Prudhomme, Synthesis and polymerization of racemic and optically active substituted -propiolactones V. - methylpropiolactone, J. Polym. Sci.: Part A: Polym. Chem., 26 (1988) 1593-1607.
  • X. Jin, R.A. Gross, Chemoenzymatic synthesis and study of poly(α-methyl-β-propiolactone) stereocopolymers, Macromolecules., 29 (13) (1996) 4582-4590.
  • Y. Tokiwa, B.P. Calabia,C.U. Ugwu, S. Aiba, Biodegradability of plastics. Int. J. Mol. Sci., 10 9 (2009) 3722–3742.
  • R.J. Mueller, Biological degradation of synthetic polyester-enzymes as potential catalysts for polyester recycling. Process. Biochem., 41 (2006) 2124-2128.
  • Z. Wang, X. Lin, J. An, C. Ren, X. Yan, Biodegradation of polyhydroxybutyrate film by pseudomonas mendocina DS04-T, Polym. Plast. Technol., 52 (2013) 195–199.
  • http://www.intechopen.com Arnaldo Rodrigues Santos Jr. Bioresorbable polymers for tissue engineering, Chapter 11. (p: 225-246).
  • C. Zhijiang, Biocompatibility and biodegradation of novel PHB porous substrates with controlled multipore size by emulsion templates method, J. Mater. Sci: Mater. Med., 17 (2006) 1297-1303.
  • Y.H. Wei,  W.C. Chen,  H.S. Wu,  O.M. Janarthanan, Biodegradable and biocompatible biomaterial, polyhydroxybutyrate, produced by an indigenous vibrio sp. BM-1 isolated from marine environment, Mar. Drugs., 9 (2011) 615-624.
  • Y. Kumagai, Y. Doi, Enzymatic degradation of binary blends of microbial poly(3-hydroxybutyrate) with enzymatically active polymers, Polym. Degrad. Stabil., 37 (1992) 253-256.
  • S.Y. Lee, Bacterial polyhydroxyalkanoates. Biotechnol. Bioeng. 49 (1996) 1-14.
  • C.S. Reddy, R. Ghai, V.C. Rashmi Kalia, Polyhydroxyalkanoates: An overview. Bioresour. Technol., 87 (2003) 137-146.
  • T. Keshavarz, I. Roy, Polyhydroxyalkanoates: bioplastics with a green agenda. Curr. Opin. Microbiol., 13 (2010) 321-326.
  • H.Tian, Z. Tang, X. Zhuang, X. Chen, X. Jing, Biodegradable synthetic polymers: preparation, functionalization and biomedical application, Prog. Polym. Sci., 37 2 (2012) 237-280.
  • P.A.Gunatillake, R. Adhikari, Biodegradable synthetic polymers for tissue engineering, Eur. Cells. Mater., 5 (2003) 1-16.
  • A. Atala, D. Mooney, J. P. Vacanti, R. Langer, Synthetic biodegradable polymer scaffolds, Springer, BirkhauserBoston, USA, 1997.