Kollajen-Jelatin-Altın Nanopartikül Nanokompozit Sisteminin Apta-Sensör Matriksi Olarak Kullanılma Potansiyelinin İncelenmesi

Bu çalışmada biyosensör, kontrollü salım, doku mühendisliği ve diğer pek çok biyoteknoloji alanında yaygın olarak kullanılan kollajen’in, jelatin ve altın nanopartikül (AuNPs) ile oluşturduğu matriksin taramalı elektron mikroskobu (SEM), termal gravimetrik analiz (TGA), fourier-dönüşümlü infrared spektroskopisi (FTIR) gibi tekniklerle karakterizasyonu ve apta-sensör teknolojisinde kullanımı amaçlanmıştır. Kollajen-Jelatin-AuNPs yüzeyi üzerine trombin bağlayıcı aptamer (TBA) immobilize edilerek immobilizasyon şartları optimize edilmiştir. Geliştirilen apta-sensör sisteminde polimer miktarları, çapraz bağlayıcı, AuNPs miktarı, aptamer konsantrasyonları ve pH optimizasyonu yapılmıştır. Ayrıca validasyon amacıyla tekrar kullanılabilirlik ve tekrar üretilebilirlik parametreleri incelenmiştir. İletici olarak perde-baskı elektrodların ve elektrokimyasal yöntem olarak elektrokimyasal impedans spektroskopisi (EIS)’nin kullanıldığı çalışmada geliştirilen apta-sensör ile 1.95 nM seviyesinde trombin tayini yapılabilmiştir.

Investigation of the Use of Collagen-Gelatin-Gold Nanoparticle Nanocomposite System as an Aptasensor Matrix

In this study, a collagen-gelatin-gold nanoparticles (AuNPs) matrix, a material widely used in biosensor applications, controlled release systems, tissue engineering and many other biotechnology fields, was applied to the apta-sensor technology. The matrix was characterized using techniques like scanning electron microscopy (SEM), thermal gravimetric analysis (TGA) and fourier-transform infrared spectroscopy (FTIR). Immobilization conditions were optimized through immobilization of thrombin binding aptamers (TBA) on to the collagen-gelatin-AuNPs surface. Polymer, cross-linker, AuNPs and aptamer concentrations in addition to pH were optimized in the developed aptasensor systems. In addition, re-usability and reproducibility were examined for validation purposes. Thrombin levels as low as 1.97 nM were detected using screen printed carbon electrodes as transducer and Electrochemical Impedance Spectroscopy (EIS) as the electrochemical method.

___

  • P.R. Coulet, What is a Biosensor? Chapter 1, Biosensor principles and applications. New York, 1991, 1-6.
  • A.P.F. Turner, Biosensors: Fundamentals and Applications. Oxford University Press, 1987, 5-7.
  • E.A.H. Hall, Biosensors, Ch.1: Biosensors in context. Open University Press, England, 1990, 3-30.
  • L.B. McGown, M.J. Joseph, J.B. Pitner, G.P. Vonk, C.P. Linn, The nucleic acid ligand: A new tool for molecular recognition, Anal. Chem., 67 (1995) 663-668.
  • S.R. Mikkelsen, Electrochemical Biosensor for DNA sequence detection, Electroanalysis, 8 (1996) 15-19.
  • K. Kerman, B. Meric, D. Ozkan, P. Kara, A. Erdem, M. Ozsoz, Electrochemical DNA biosensor for the determination of Benzo[a]pyrene-DNA adducts, Anal. Chim. Acta, 450 (2001) 45-52.
  • J. Wang, G. Rivas, J.R. Fernandes, M. Jiang, J.L.L. Paz, R. Waymire, T.W. Nielsen, R.C. Getts, Adsorption and detection of DNA dendrimers at carbon electrodes. Electroanalysis, 10 (1998), 553-556.
  • E. Emregül, Development of a new biosensor for superoxide radicals, Anal. Bioanal. Chem., 383 (2005) 947-54.
  • E. Emregül, S. Sungur, U. Akbulut, Immobilization of glucose oxidase onto gelatin for biosensor construction, J. Biomat. Sci. Polym. E, 16 (2005) 505-519.
  • R. Malhotra, V. Patel, J.P. Vaqu, J.S. Gutkind, J.P. Rusling, Ultrasensitive Electrochemical immunosensor for oral cancer biomarker IL-6 using carbon nanotube forest electrodes and multilabel amplification, Anal. Chem., 82 (2010) 3118–3123.
  • M. Yang, C. Wang, Label-free immunosensor based on gold nanoparticle silver enhancement, Anal. Biochem., 385 (2009) 128-131.
  • B. Derkus, P. Acar-Bozkurt, M. Tulu, K.C. Emregul, C. Yucesan, E. Emregul, Simultaneous quantification of myelin basic protein and tau proteins in cerebrospinal fluid and serum of multiple sclerosis patients using nanoimmunosensor, Biosens. Bioelectron., 89 (2017) 781-788.
  • D. Davalos, K.M. Baeten, Early detection of thrombin activity in neuroinflammatory disease, Ann. Neurol., 75 (2014) 303-308.
  • J. Chapman, Thrombin in inflammatory brain diseases, Autoimmun. Rev., 5 (2006), 528–531.
  • B. Derkus, Y.E. Arslan, A.T. Bayrac, I. Kantarcioglu, K.C. Emregul, E. Emregul. Development of a novel aptasensor using jellyfish collagen as matrixand thrombin detection in blood samples obtained from patients withvarious neurodisease, Sens. Actuators B, 228 (2016) 725–736.