α-Glukozidazın Mısırdan Üçlü-Faz Ayırma ile Kısmi̇ Saflaştırılması ve Biyokimyasal Karakterizasyonu

α-Glukozidaz önce mısırdan üçlü-faz ayırma (TPP) tekniği ile saflaştırıldı ve ardından karakterize edildi. Üç faz elde etmek için amonyum sülfat ve t-butanol kullanıldı. Mısır α-glukozidazının yüksek saflaştırma katı ve aktivite geri kazanımı ile etkin bir şekilde saflaştırılması için çeşitli proses parametrelerinin örneğin; amonyum sülfat konsantrasyonu, enzim: t-butanol oranı ve pH etkisi çalışıldı. TPP sisteminin optimum saflaştırma koşulları %50(w/v) amonyum sülfat saturasyonu, 1.0:0.75 (v/v) ham ekstrakt:t-butanol oranı ve pH 4.5 olarak belirlendi. Optimize koşullar altında α-glukozidaz %60 aktivite verimi ile 3.8 kat saflaştırıldı. α-Glukozidazın molekül kütlesi sodyum dodesil sülfat poliakrilamid jel elektroforezi (SDS-PAGE) ile yaklaşık 29 kDa olarak belirlendi. Karakterizasyon çalışmaları, enzimin optimum pH ve sıcaklığının pH 4.5 ve 55°C olduğunu gösterdi. Saflaştırılan enzimin 25-60°C sıcaklık aralığında ve pH 3.5-5.5 aralığında oldukça kararlı olduğu bulundu. Kinetik sabitler (KM ve Vmax) Lineweaver-Burk diyagramından 0.64 mM ve 0.45 U olarak hesaplandı. α-Glukozidaz aktivitesi 10 mM CaCl2 konsantrasyonunda oldukça arttı (%130). TPP α-glukozidazın uygulamaları için konsantre edilmesi ve saflaştırılması için kullanışlı bir stratejidir.

Partial Purification and Biochemical Characterization of α-Glucosidase from Corn by Three-Phase Partitioning

α-Glucosidase was first purified from corn by three-phase partitioning(TPP) and then characterized. Ammonium sulfate and t-butanol were used in order to obtain three phases. Effect of different process parameters such as; ammonium sulfate concentration, enzyme to t-butanol ratio and pH required for efficient purification of the corn α-glucosidase was studied to get highest purification fold and activity recovery. Optimum purification parameters of the TPP system were determined as 50% (w/v) ammonium sulfate saturation with 1.0:0.75 (v/v) ratio of crude extract: t-butanol at pH 4.5. Under optimized conditions α-glucosidase was purified with 3.8 purification fold and 60% activity recovery. The molecular weight of α-glucosidase was determined approximately as 29 kDa by using sodium dodecyl sulfate–polyacrylamide gel electrophoresis(SDS–PAGE). Characterization studies showed that, optimum pH and temperature of α-glucosidase were pH 4.5 and 55°C, respectively. The purified enzyme was found to be very stable at a temperature range of 25-60°C and a pH range of 3.5-5.5. Kinetic constants (KM and Vmax) were calculated from Lineweaver-Burk plot as 0.64 mM and 0.45 U, respectively. With 10 mM of CaCl2 concentration α-glucosidase activity was significantly increased to 130%. TPP is a useful strategy to concentrate and purify α-glucosidase for its applications.

___

  • T. Yamamoto, T. Unno, Y. Watanabe, M. Yamamoto, H. Mori, S. Chiba, A. Kimura, Purification and characterization of Acremonium implicatum alphaglucosidase having regioselectivity for alpha-1,3glucosidic linkage, Biochim. Biophys. Acta., 1700 (2004) 189-98.
  • G. Andreotti, A. Giordano, A. Tramice, E. Mollo, A. Trincone, Hydrolyses and transglycosylations performed by purified α-D-glucosidase of the marine mollusc Aplysia fasciata, J. Biotechnol., 1222 (2006) 74-84.
  • G.C. Giannesi, M.L.T. Polizeli, H.F. Terenzi, J.A. Jorge, A novel α-glucosidase from Chaetomium thermophilum var. coprophilum that converts maltose into trehalose: Purification and partial characterisation of the enzyme, Process Biochem., 41 (2006) 1729-1735.
  • S. Ramzi, V. Hosseininaveh, Biochemical characterization of digestive α-amylase, α-glucosidase and β-glucosidase in pistachio green stink bug, Brachynema germari Kolenati (Hemiptera: Pentatomidae), J. Asia-Pacific Entomol., 13 (2010) 215–219.
  • H.J. Liu, Y.Tian, T.L. Zheng, C.L. Yan, H.S. Hong, Studies of glucosidase activities from surface sediments in mangrove swamp, J. Exp. Marine Biol. Ecol., 367 (2008) 111-117.
  • H. Iwata, T. Suzuki, I. Aramaki, Purification and characterization of rice alpha-glucosidase, a key enzyme for alcohol fermentation of rice polish, J. Biosci. Bioeng., 95 (2003) 106-108.
  • O.A. Akinloye, E.A. Balogun, S.O. Kareem, O.S. Mosaku, Partial purification and some properties of α-glucosidase from Trichoderma longibrachiatum,Biokemistri, 24 (2012) 31-37.
  • C. Dennison, R. Lovrien, Three phase partitioning, concentration and purification of proteins, Prot. Exp. Purif., 11 (1997) 149-161.
  • R.E. Lovrien, C. Goldensoph, P.C. Anderson, B. Odegaard, Three phase partitioning (TPP) via t-butanol: enzyme separation from crudes, in: R Burgess (Ed), Protein Purification: Micro to macro, A. R. Liss, Inc., New York, 1987, pp. 131–148.
  • R.N. Pike, C. Dennison, Protein fractionation by threephase partitioning in aqueous/t-butanol mixtures, Biotechnol. Bioeng., 33 (1989) 221–228.
  • I. Roy, M.N. Gupta, Three-phase affinity partitioning of proteins, Anal. Biochem.,300 (2002) 11–14.
  • S.K. Dhananjay, V.H. Mulimani, Purification of α-galactosidase and invertase by three-phase partitioning from crude extract of Aspergillus oryzae, Biotechnol. Lett., 30 (2008) 1565–1569.
  • S.M. Harde, R.S. Singhal, Extraction of forskolin from Coleus forskohlii roots using three phase partitioning, Sep. Purif. Technol., 96 (2012) 20-25.
  • H.S. Choonia, S.S. Lele, Three-phase partitioning of β-galactosidase produced by an indigenous Lactobacillus acidophilus isolate, Sep. Purif. Technol., 110 (2013) 44-50.
  • M. Gagaoua, N. Boucherba, A. Bouanane-Darenfed, F. Ziane, S. Nait-Rabah, K. Hafid, H.R. Boudechicha, Three-phase partitioning as an efficient method for the purification and recovery of ficin from Mediterranean fig (Ficus carica L.) latex, Sep. Purif. Technol., 132 (2014) 461-467.
  • S. Rawdkuen, A. Vanabun, S. Benjakul, Recovery of proteases from the viscera of farmed giant catfish (Pangasianodon gigas) by three-phase partitioning, Process Biochem., 47 (2012) 2566-2569.
  • S. Rajeeva, S.S. Lele, Three-phase partitioning for concentration and purification of laccase produced by submerged cultures of Ganoderma sp. WR-1, Biochem. Eng. J., 54 (2011) 103–110.
  • H.H. Wang, C.L. Chen, T.L. Jeng, J.M. Sung, Comparisons of α-amylase inhibitors from seeds of common bean mutants extracted through three phase partitioning, Food Chem.,128 (2011) 1066-1071.
  • E. Akardere, B. Özer, E.B. Celem, S. Önal, Three-phase partitioning of invertase from Baker’s yeast, Sep. Purif. Technol.,72 (2010) 335–339.
  • B. Özer, E. Akardere, E.B. Celem, S. Önal, Threephase partitioning as a rapid and efficient method for purification of invertase from tomato, Biochem. Eng. J., 50 (2010) 110–115.
  • E. Calcı, T. Demir, E.B. Celem, S. Önal, Purification of tomato (Lycopersicon esculentum) α-galactosidase by three-phase partitioning and its characterization, Sep. Purif. Technol., 70 (2009) 123-127.
  • A. Şen, M. Eryılmaz, H. Bayraktar, S. Önal, Purification of α-galactosidase from pepino (Solanum muricatum) by three-phase partitioning, Sep. Purif. Technol., 83 (2011) 130-136.
  • H. Bayraktar, S. Önal, Concentration and purification of α-galactosidase from watermelon (Citrullus vulgaris) by three-phase partitioning, Sep. Purif. Technol., 118 (2013) 835–841.
  • A. Zibaee,A.R. Bandani, S. Ramzi, Characterization of α and β-glucosidases in midgut and salivary glands of Chilo suppressalis Walker (Lepidoptera: Pyralidae), rice striped stem borer, Comptes Rendus Biologies, 332 ( 2009) 633-641.
  • M.M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principles of protein dyebinding, Anal. Biochem., 72 (1976) 248–254.
  • U.K. Laemmli, Cleavage of structural proteins during the assembly of the head of bacteriophage, Nature, 227 (1970) 680–685.
  • V.V. Kumar, V. Sathyaselvabala, M.P. Premkumar, T. Vidyadevi, S. Sivanesan, Biochemical characterization of three phase partitioned laccase and its application in decolorization and degradation of synthetic dyes, J. Mol. Cat. B: Enzymatic, 74 (2012) 63-72.
  • C. Dennison, Three-phase partitioning, in: H. Tschesche (Ed), Methods in Protein Biochemistry, Walter de Gruytee, Berlin, Germany, 2011, pp. 1-5.
  • S.K. Dhananjay, V.H. Mulimani, Three-phase partitioning of α-galactosidase from fermented media of Aspergillus oryzae and comparison with conventional purification techniques. J. Ind. Microbiol. Biotechnol., 36 (2009) 123-128.
  • C. Dennison, L. Moolman, C.S. Pillay, R.E. Meinesz, t-Butanol: nature’s gift for protein isolation,S. Afr. J. Sci., 96 (2000) 159-160.
  • P. Chaiwut, P. Pintathong, S. Rawdkuen, Extraction and three-phase partitioning behaviour of proteases from papaya peels, Process Biochem., 45 (2010) 11721175.
  • I. Roy, A. Sharma, M.N. Gupta, Three-phase partitioning for simultaneous renaturation and partial purification of Aspergillus niger xylanase, Biochim. Biophys. Acta.,1698 (2004) 107-110.
  • H. Matsui, I. Yazawa, S. Chiba, Purification and substrate specificity of sweet corn (Zea mays varsaccharata) alpha-glucosidase, Agric. Biol. Chem., 45 (1981) 887-894.
  • J.C. Bravo-Torres, J.C. Villagomez-Castro, C. CalvoMendez, A. Flores-Carreon, E. Lopez-Romero, Purification of a membrane–bound α-glucosidase from parasite Entamoeba histolytica, Int. J. Parasitology, 34 (2004) 455-462.
  • D.T. Plummer, An Introduction to Practical Biochemistry, third ed., Tata McGraw-Hill Publishing Company Limited, Delhi, India, 1988.
  • M. Ghadamyari, V. Hosseininaveh, M. Sharifi, Partial biochemical characterization of α- and β-glucosidases of lesser mulberry pyralid, Glyphodes pyloalis Walker (Lep.: Pyralidae). C. R. Biologies. 333 (2010), 197-204.
  • A.C. Cihan, M. Benli, C. Cokmus, Purification and characterization of intracellular and extracellular α-glucosidases from Geobacillus toebii strain E134, Cell Biochem. Funct., 30 (2011) 69-81.
  • D. Marin, D. Linde, M.F. Lobato, Purification and biochemical characterization of an α-glucosidase from Xanthophyllomyces dendrorhous, Yeast, 23 (2006) 117-125.
  • T.P. Frandsen, B. Svensson, Plant α-glucosidase of the glycoside hydrolase family 31. Molecular properties, substrate specificity, reaction mechanism and comparison with family members of different origin, Plant Mol. Biol., 37 (1998) 1-13.
  • Y.A.Y. Patrice, K.K. Hubert, B. Siaka, K.E.J. Parfait, K.L. Partice, Purification and biochemical characterization of a specific alpha-glucosidase from digestive fluid of larvae of the palm weevil, Rhynchophorus palmarum L., Int. J. Biosci., 7 ( 2015) 74-85.
  • J. Wongchawalit, T. Yamamoto, H. Nakai, Y.M. Kim, N. Sato, M. Nishimoto, M. Okuyama, H. Mori, O. Sagi, C.H. Chanchae, S. Wongsiri, R. Surarit, J. Svasti, S. Chiba, A. Kimurai, Purification and characterization of alphaglucosidase from Japanese honeybee (Apisceano japonica) and molecular clonning of its DNA, Biosci. Biotechnol. Biochem., 70 (2006) 2889-2898.
  • N. Memarizadeh, P. Zamani, R.H. Sajedi, M. Ghadamyari, Purification and characterization of midgut alpha-glucosidase from larvae of the rice gren caterpillar, Naranga aenescens, J. Agric. Sci. Technol., 16 (2014) 1229-1240.
  • Y. Yamasaki, M. Fujimoto, J. Kariya, H. Kono, Purification and caharacterization of an α-glucosidase of the digestive juice of the snail Limicdria flammea, Int. J. Plant Animal Env. Sci., 4 (2014) 376-388.
  • S.S. Justin S.T. Bernard, K.K. Mathias, S.R. Renel, K.K.R.A. Aboutous, D.J. Kore, Purification and physicochemical characterization of the α-glucosidase of the digestive juice of the snail Limicolria flammea (müller 1774), Int. J. Plant Animal Environ Sci., 4 (2014) 376-388.
Hacettepe Journal of Biology and Chemistry-Cover
  • ISSN: 2687-475X
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1972
  • Yayıncı: Hacettepe Üniversitesi, Fen Fakültesi
Sayıdaki Diğer Makaleler

Sodyum Hipokloritin Gökkuşağı Alabalıklarında Strese Sebep Olması: Tatlı Su Kirlenmesinin Ekotoksikolojik Göstergesi Olarak Kan Parametrelerindeki Varyasyonu

Arnela KARAHODZİC, Zejneb BABİC, Ema ZUKİC, Edina SEHİC, Subha DZAFİC, Andi ALİJAGİC, Erna ISLAMAGIC, Damir SULJEVIC

Kemaliye İlçesinin (Erzincan) Florası

Mehmet Ufuk ÖZBEK, Ali KANDEMİR, Sırrı YÜZBAŞIOĞLU, Haşim ALTINÖZLÜ

Oda Sıcaklığında Benzen Hidrojenlenmesinde Katalizör Olarak Kullanılan Tungsten(VI) Oksit Destekli Rodyum(0) Nanoparçacıkları

Serdar AKBAYRAK

Amin Gruplarla Modifiye Edilmiş Poli (3-Kloro-2-Hidroksipropil Metakrilat) Termal Davranışlarının İncelenmesi

Duygu ALPARSLAN

Yapay Sinir Ağı Kullanarak Kuzeybatı Anadolu’dan Darevskia bithynica ‘nın (Méhely 1909) Cinsiyet Dimorfizmi Tahmini

Yusuf KUMLUTAŞ, Çağın Kandemir ÇAVAŞ

Kadmiyum Zehirlenmesinde Oral Şelasyon Tedavisi için Cd(II)MAC Baskılanmış pHEMAC Nanoparçacıkları

Handan YAVUZ, Duygu ÇİMEN, Adil DENİZLİ, Mitra JALİLZADEH

α-Glukozidazın Mısırdan Üçlü-Faz Ayırma ile Kısmi̇ Saflaştırılması ve Biyokimyasal Karakterizasyonu

Hasan BAYRAKTAR, Seçil ÖNAL, Başak BİLEN

Yağ Çıkarma İşlemi Sonrasında Atık Materyal Olarak Ortaya Çıkan Çörek Otu Posasının Anti-oksidan, Anti-proliferatif ve Antianjiyojenik Özellikleri

Gamze TAN

Aphanius sureyanus (Neu, 1937) (Cyprinodontiformes:Aphaniidae) Türünün Koruma Durumu Hakkında bir Yeniden Değerlendirme ve Türün Esaret Altındaki Üremesiyle İlgili İlk Veriler

Baran YOĞURTÇUOĞLU

Ranid Taksonomisinde Geometrik Morfometrik Analiz: Beş RanidTürünün Kondrokranial Şekil Varyasyonu (Anura: Ranidae)

Elif YILDIRIM