Yağ Çıkarma İşlemi Sonrasında Atık Materyal Olarak Ortaya Çıkan Çörek Otu Posasının Anti-oksidan, Anti-proliferatif ve Antianjiyojenik Özellikleri

Bu çalışmanın amacı, yağ çıkarma işlemi sonrasında atık materyal olarak ortaya çıkan çörek otu (Nigella sativa L.-NS) posasının anti-oksidan, anti-metastatik ve anti-anjiyojenik özelliklerinden yola çıkarak biyolojik etkinliklerini incelemektir. NS posasından çıkarılan özütün UV-görünür bölge (UV-vis), Fourier Dönüşümlü Kızılötesi (FTIR) ve gaz kromatografisi-kütle spektrometresi (GC-MS) ölçümleriyle karakteristiksel özellikleri incelendikten sonra 2,2-difenil- 1-pikrilhidrazil (DPPH) ve Trolox eşdeğer antioksidan kapasitesi (TEAC) yöntemleri kullanılarak anti-oksidatif kapasitesi tayin edilmiştir. Posa özütünün anti-proliferatif etkileri, etkilerin hücre tipine özgü olup olmadığını incelemek amacıyla hem kanser hem de kanser olmayan hücreler üzerinde test edilmiştir. Anti-anjiyojenik testler civciv korioallantoik membran testi (CAM) aracılığıyla gerçekleştirilmiştir. Sonuçlar NS posa ekstratının radikal süpürücü etkilerini halen muhafaza ettiğini ve normal hücreler ile karşılaştırıldığında kanser hücre proliferasyonunu daha etkin bir biçimde düşürdüğünü göstermiştir. Ayrıca CAM testleri NS posa özütünün VEGF uyarımlı vaskülarizasyon ve gelişimini etkin bir biçimde sınırladığını göstermiştir. NS posa özütü metastatik hücre topluluklarının baskılanmasında ve kanser başta olmak üzere patolojik anjiyogenez ile seyreden hastalıkların tedavisinde faydalı sonuçlar üretebilir. Bu çalışma bitkisel kaynaklı atık maddelerin birçok alanda çok çeşitli amaçlar doğrultusunda kullanılmak üzere geri dönüştürülebileceğine dikkat çekmektedir.

Antioxidative, Antiproliferative and Antiangiogenic Activities of Nigella sativa L. pulp, a Waste Material Remaining from Oil Production

The aim of this study was to investigate the biological activities such as antioxidative, antimetastatic and antiangiogenic properties of the Nigella sativa L. (NS) pulp, which is a waste material of the oil production process. Following the investigation of the characteristic properties of NS pulp extract with UV-visible (UVvis), fourier-transform infrared (FTIR) and gas chromatography-mass spectroscopy (GC-MS) measurements, its antioxidative capacity was determined using 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and Trolox equivalent antioxidant capacity (TEAC) assays. Antiproliferative effects of the pulp extract were tested on both cancerous and non-cancerous cells to examine whether the effects are specific to cell types. Antiangiogenic tests were performed via chick chorioallantoic membrane (CAM) assay. The results showed that the NS pulp extract still maintained its radical scavenging effects and reduced the proliferation of cancer cells more efficiently compared to non-cancerous cells. Furthermore, CAM assays demonstrated that the pulp extract effectively limited vascular endothelial growth factor (VEGF)-stimulated vascularization and development. NS pulp might be used for the suppression of the metastatic cell populations and for the treatment of the diseases particularly like cancer, which progress with pathological angiogenesis. This study highlights that such waste materials from plants can be recycled with various uses in many fields.

___

  • E. Daukšas, P.R. Venskutonis, B. Sivik, Comparison of oil from nigella damascena seed recovered by pressing, conventional solvent extraction and carbon dioxide extraction, J. Food Sci., 67 (2002) 1021-1024.
  • W.C. Evans, Trease and Evans’ Pharmacognosy, 16th ed., Saunders Ltd., Edinburgh, 2009.
  • M. Tanker, N. Tanker, Farmakognazi, Ankara University Faculty of Pharmacy Press No: 58, Ankara, Turkey, 1985.
  • M. Tanker, N. Tanker, Farmakognazi, Ankara University Faculty of Pharmacy Press No: 65, Ankara, Turkey, 1990.
  • N. Tanker, M. Koyuncu, M. Coşkun, Farmasötik Botanik, Ankara Üniversitesi Eczacılık Fakültesi Yayınları, Ankara, Turkey, 2007.
  • S. Padhye, S. Banerjee, A. Ahmad, R. Mohammad, F.H. Sarkar, From here to eternity - the secret of Pharaohs: Therapeutic potential of black cumin seeds and beyond, Cancer Ther., 6 (2008) 495-510.
  • A. Ahmad, A. Husain, M. Mujeeb, S.A. Khan, A.K. Najmi, N.A. Siddique, Z.A. Damanhouri, F. Anwar, A review on therapeutic potential of Nigella sativa: A miracle herb, Asian Pac. J. Trop. Biomed., 3 (2013) 337-352.
  • B.B. Aggarwal, A.B. Kunnumakkara, K.B. Harikumar, S.T. Tharakan, B. Sung, P. Anand, Potential of spicederived phytochemicals for cancer prevention, Planta Med., 74 (2008) 1560-1569.
  • M. Tariq, Nigella Sativa Seeds: Folklore Treatment in Modern Day Medicine, Saudi J. Gastroenterol., 14 (2008) 105-106.
  • A.H. Gilani, Q. Jabeen, M.A.U. Khan, A review of medicinal uses and pharmacological activities of Nigella sativa, Pakistan J. Biolog. Sci., 7 (2004) 441451.
  • M. Burits, F. Bucar, Antioxidant activity of Nigella sativa essential oil, Phytother. Res., 14 (2000) 323328.
  • M. Türkdoğan, Z. Ağaoğlu, Z. Yener, R. Sekeroğlu, H. Akkan, M. Avci, The role of antioxidant vitamins (C and E), selenium and Nigella sativa in the prevention of liver fibrosis and cirrhosis in rabbits: new hopes, Dtsch. Tierarztl. Wochenschr., 108 (2001) 71-73.
  • M.F. Ramadan, L.W. Kroh, J.-T. Mörsel, Radical scavenging activity of black cumin (Nigella sativa L.), coriander (Coriandrum sativum L.), and niger (Guizotia abyssinica Cass.) crude seed oils and oil fractions, J. Agric. Food Chem., 51 (2003) 6961-6969.
  • M.L. Salem, Immunomodulatory and therapeutic properties of the Nigella sativa L. seed, Int. Immunopharmacol., 5 (2005) 1749-1770.
  • U. Kalus, A. Pruss, J. Bystron, M. Jurecka, A. Smekalova, J.J. Lichius, H. Kiesewetter, Effect of Nigella sativa (black seed) on subjective feeling in patients with allergic diseases, Phytother. Res., 17 (2003) 1209-1214.
  • P.J. Houghton, R. Zarka, B. de las Heras, J.R.S. Hoult, Fixed oil of Nigella sativa and derived thymoquinone inhibit eicosanoid generation in leukocytes and membrane lipid peroxidation, Planta Med., 61 (1995) 33-36.
  • M.A. Khan, Chemical composition and medicinal properties of Nigella sativa Linn, Inflammopharmacology, 7 (1999) 15-35.
  • M. Hanafy, M. Hatem, Studies on the antimicrobial activity of Nigella sativa seed (black cumin), J. Ethnopharmacol., 34 (1991) 275-278.
  • E.M. Aboul, N. El-Shaer, N. Ghanem, Antimicrobial evaluation and chromatographic analysis of some essential and fixed oils, Pharmazie, 51 (1996) 993-994.
  • B.H. Ali, G. Blunden, Pharmacological and toxicological properties of Nigella sativa, Phytother. Res., 17 (2003) 299-305.
  • S.A.A. Linjawi, W.K.B. Khalil, M.M. Hassanane, E.S. Ahmed, Evaluation of the protective effect of Nigella sativa extract and its primary active component thymoquinone against DMBA-induced breast cancer in female rats, Arch. Med. Sci. 11 (2015) 220-229.
  • M.F. Ramadan, Nutritional value, functional properties and nutraceutical applications of black cumin (Nigella sativa L.): an overview, Int. J. Food Sci. Technol., 42 (2007) 1208-1218.
  • M. El-Dakhakhny, N.I. Mady, M.A. Halim, Nigella sativa L. oil protects against induced hepatotoxicity and improves serum lipid profile in rats, Arzneimittelforschung, 50 (2000) 832-836.
  • A. Zaoui, Y. Cherrah, K. Alaoui, N. Mahassine, H. Amarouch, M. Hassar, Effects of Nigella sativa fixed oil on blood homeostasis in rat, J. Ethnopharmacol., 79 (2002) 23-26.
  • Z. Ibraheim, Effect of Nigella sativa seeds and total oil on some blood parameters in female volunteers, Saudi Pharm. J., 10 (2002) 54-59.
  • G. Marinova, V. Batchvarov, Evaluation of the methods for determination of the free radical scavenging activity by DPPH, Bulg. J. Agric. Sci., 17 (2011) 11-24.
  • A.J. Kirby, R.J. Schmidt, The antioxidant activity of Chinese herbs for eczema and of placebo herbs — I, J. Ethnopharmacol., 56 (1997) 103-108.
  • C. Sarikurkcu, B. Tepe, D. Daferera, M. Polissiou, M. Harmandar, Studies on the antioxidant activity of the essential oil and methanol extract of Marrubium globosum subsp. globosum (lamiaceae) by three different chemical assays, Bioresour. Technol., 99 (2008) 4239-4246.
  • C. Sarikurkcu, K. Arisoy, B. Tepe, A. Cakir, G. Abali, E. Mete, Studies on the antioxidant activity of essential oil and different solvent extracts of Vitex agnus castus L. fruits from Turkey, Food Chem. Toxicol., 47 (2009) 2479-2483.
  • M.A. Sanda, G. Zengin, A. Aktümsek, Y.S. Çakmak, Evaluation of antioxidant potential of two Daphne species (D. gnidioides and D. pontica) from Turkey, Emirates J. Food Agricult., 27 (2015) 488-494.
  • T. Mosmann, Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays, J. Immunol. Method., 65 (1983) 55-63.
  • R. Velho-Pereira, A. Kumar, B.N. Pandey, K.P. Mishra, A.G. Jagtap, Radioprotection by Macerated Extract of Nigella sativa in Normal Tissues of Fibrosarcoma Bearing Mice, Indian J. Pharm. Sci., 74 (2012) 403-414.
  • R.M. Silverstein, F.X. Webster, D.J. Kiemle, Spectrometric identification of organic compounds, 7th ed., John Wiley & Sons, Inc, Hoboken, NJ, USA, 2005.
  • A.A. Doolaanea, A.F. Harun, F. Mohamed, Quantification of Nigella Sativa Oil (NSO) from Biodegradable PLGA Nanoparticles Using FTIR Spectroscopy, Int. J. Pharm. Pharm. Sci., 6 (2014) 228-232.
  • K. Nivetha, G. Prasanna, GC-MS and FT-IR Analysis of Nigella sativa L. Seeds, Int. J. Adv. Res. Biol. Sci., 3 (2016) 45-54.
  • M.M.B. Almeida, P.H.M. de Sousa, Â.M.C. Arriaga, G.M. do Prado, C.E.d.C. Magalhães, G.A. Maia, T.L.G. de Lemos, Bioactive compounds and antioxidant activity of fresh exotic fruits from northeastern Brazil, Food Res. Int., 44 (2011) 2155-2159.
  • B. Uttara, A.V. Singh, P. Zamboni, R.T. Mahajan, Oxidative Stress and Neurodegenerative Diseases: A Review of Upstream and Downstream Antioxidant Therapeutic Options, Curr. Neuropharmacol., 7 (2009) 65-74.
  • N.R. Madamanchi, A. Vendrov, M.S. Runge, Oxidative Stress and Vascular Disease, Arterioscler Thromb. Vasc. Biol., 25 (2005) 29-38.
  • M. Valko, C.J. Rhodes, J. Moncol, M. Izakovic, M. Mazur, Free radicals, metals and antioxidants in oxidative stress-induced cancer, Chem. Biol. Interact., 160 (2006) 1-40.
  • X.J. Duan, W.-W. Zhang, X.M. Li, B.G. Wang, Evaluation of antioxidant property of extract and fractions obtained from a red alga, Polysiphonia urceolata, Food Chem., 95 (2006) 37-43.
  • W. Brand-Williams, M.E. Cuvelier, C. Berset, Use of a free radical method to evaluate antioxidant activity, LWT-Food Sci. Technol., 28 (1995) 25-30.
  • S. Sangeetha, R. Archit, A. SathiaVelu, Phytochemical Testing, Antioxidant Activity, HPTLC and FTIR Analysis of Antidiabetic Plants Nigella sativa, Eugenia jambolana, Andrographis paniculata and Gymnema sylvestre, Res. J. Biotech., 9 (2014) 65-72.
  • S. Bourgou, R. Ksouri, A. Bellila, I. Skandrani, H. Falleh, B. Marzouk, Phenolic composition and biological activities of Tunisian Nigella sativa L. shoots and roots, C. R. Biol., 331 (2008) 48-55.
  • G. Singh, P. Marimuthu, C.S. de Heluani, C. Catalan, Chemical constituents and antimicrobial and antioxidant potentials of essential oil and acetone extract of Nigella sativa seeds, J. Sci. Food Agric., 85 (2005) 2297-2306.
  • N.B. Thippeswamy, K.A. Naidu, Antioxidant potency of cumin varieties—cumin, black cumin and bitter cumin— on antioxidant systems, Eur. Food Res. Technol., 220 (2005) 472-476.
  • N. Şen, Y. Kar, Y. Tekelİ, Antioxidant activities of black cumin (Nigella sativa L.) seeds cultivating in different regions of Turkey, J. Food Biochem., 34 (2010) 105-119.
  • D. Kadam, S.S. Lele, Extraction, characterization and bioactive properties of Nigella sativa seedcake, J. Food Sci. Technol., 54 (2017) 3936-3947.
  • A.A. Mariod, R.M. Ibrahim, M. Ismail, N. Ismail, Antioxidant activity and phenolic content of phenolic rich fractions obtained from black cumin (Nigella sativa) seedcake, Food Chem., 116 (2009) 306-312.
  • D. Kadam, N. Shah, S. Palamthodi, S.S. Lele, An investigation on the effect of polyphenolic extracts of Nigella sativa seedcake on physicochemical properties of chitosan-based films, Carbohydr. Polym., 192 (2018) 347-355.
  • R.S. Mansour, A.K. Nasser, N.Y. Abo, The Effect of different Nigella sativa L. seed (cake) concentrations on leukocytes counts and some serum immunological parameters in calves, Tikrit J. of Pure Sci., 18 (2013) 31-35.
  • Y. Lu, L. Yeap Foo, Antioxidant activities of polyphenols from sage (Salvia officinalis), Food Chem., 75 (2001) 197-202.
  • B. Halliwell, Free radicals and antioxidants–quo vadis?, Trends Pharmacol. Sci., 32 (2011) 125-130.
  • M. Ristow, K. Zarse, A. Oberbach, N. Klöting, M. Birringer, M. Kiehntopf, M. Stumvoll, C.R. Kahn, M. Blüher, Antioxidants prevent health-promoting effects of physical exercise in humans, Proc. Natl. Acad. Sci. U.S.A., 106 (2009) 8665-8670.
  • J.W. Finley, A.-N. Kong, K.J. Hintze, E.H. Jeffery, L.L. Ji, X.G. Lei, Antioxidants in Foods: State of the Science Important to the Food Industry, J. Agricul. Food Chem., 59 (2011) 6837-6846.
  • I. Batinić-Haberle, J.S. Rebouças, I. Spasojević, Superoxide Dismutase Mimics: Chemistry, Pharmacology, and Therapeutic Potential, Antioxid. Redox Signal., 13 (2010) 877-918.
  • R. Apak, S. Gorinstein, V. Böhm, K.M. Schaich, M. Özyürek, K. Güçlü, Methods of measurement and evaluation of natural antioxidant capacity/activity (IUPAC Technical Report), Pure Appl. Chem., 85 (2013) 957-998.
  • A.M. Shoieb, M. Elgayyar, P.S. Dudrick, J.L. Bell, P.K. Tithof, In vitro inhibition of growth and induction of apoptosis in cancer cell lines by thymoquinone, Int. J. Oncol., 22 (2003) 107-113.
  • H. Gali-Muhtasib, M. Diab-Assaf, C. Boltze, J. AlHmaira, R. Hartig, A. Roessner, R. Schneider-Stock, Thymoquinone extracted from black seed triggers apoptotic cell death in human colorectal cancer cells via a p53-dependent mechanism, Int. J. Oncol., 25 (2004) 857-866.
  • H. Gali-Muhtasib, W.G.A. Kheir, L.A. Kheir, N. Darwiche, P.A. Crooks, Molecular pathway for thymoquinoneinduced cell-cycle arrest and apoptosis in neoplastic keratinocytes, Anticancer Drugs, 15 (2004) 389-399.
  • M. Roepke, A. Diestel, K. Bajbouj, D. Walluscheck, P. Schonfeld, A. Roessner, R. Schneider-Stock, H. GaliMuhtasib, Lack of p53 augments thymoquinoneinduced apoptosis and caspase activation in human osteosarcoma cells, Cancer Biol. Ther. 6(2007) 160169.
  • O.A. Badary, A.M. Gamal El-Din, Inhibitory effects of thymoquinone against 20-methylcholanthreneinduced fibrosarcoma tumorigenesis, Cancer Detect. Prev., 25 (2001) 362-368.
  • S.H. Jafri, J. Glass, R. Shi, S. Zhang, M. Prince, H. Kleiner-Hancock, Thymoquinone and cisplatin as a therapeutic combination in lung cancer: In vitro and in vivo, J. Exp. Clin. Cancer Res., 29 (2010) 87.
  • J. Yang, X.R. Kuang, P.T. Lv, X.X. Yan, Thymoquinone inhibits proliferation and invasion of human nonsmallcell lung cancer cells via ERK pathway, Tumor Biol., 36 (2015) 259-269.
  • A.O. Kaseb, K. Chinnakannu, D. Chen, A. Sivanandam, S. Tejwani, M. Menon, Q.P. Dou, G.P.-V. Reddy, Androgen receptor and E2F-1 targeted thymoquinone therapy for hormone-refractory prostate cancer, Cancer Res., 67 (2007) 7782-7788.
  • G. Lupidi, A. Scire, E. Camaioni, K. Khalife, G. De Sanctis, F. Tanfani, E. Damiani, Thymoquinone, a potential therapeutic agent of Nigella sativa, binds to site I of human serum albumin, Phytomedicine, 17 (2010) 714-720.
  • S. Ivankovic, R. Stojkovic, M. Jukic, M. Milos, M. Milos, M. Jurin, The antitumor activity of thymoquinone and thymohydroquinone in vitro and in vivo, Exp. Oncol., 28 (2006) 220-224.
  • H. Gali-Muhtasib, A. Roessner, R. Schneider-Stock, Thymoquinone: A promising anti-cancer drug from natural sources, Int. J. Biochem. Cell Biol., 38 (2006) 1249-1253.
  • R. Schneider-Stock, I.H. Fakhoury, A.M. Zaki, C.O. ElBaba, H.U. Gali-Muhtasib, Thymoquinone: fifty years of success in the battle against cancer models, Drug Discov. Today, 19( 2014) 18-30.
  • M.M. AbuKhader, Thymoquinone in the clinical treatment of cancer: Fact or fiction?, Pharmacogn. Rev., 7 (2013) 117-120.
  • T. Tsuzuki, Y. Tokuyama, M. Igarashi, T. Miyazawa, Tumor growth suppression by α-eleostearic acid, a linolenic acid isomer with a conjugated triene system, via lipid peroxidation, Carcinogenesis, 25 (2004) 14171425.
  • M. Zhang, B. Fang, L.S. Chen, Study on the Antitumor Activity and Structural Changes of Bovine Lactoferrin-Oleic Acid and Linoleic Acid Complex, Chem. Engin. Transact., 46 (2015) 1399-1404.
  • C. Carrillo, M.d.M. Cavia, S.R. Alonso-Torre, Antitumor effect of oleic acid; mechanisms of action. A review, Nutrición Hospitalaria, 27 (2012) 1860-1865.
  • L. Jiang, W. Wang, Q. He, Y. Wu, Z. Lu, J. Sun, Z. Liu, Y. Shao, A. Wang, Oleic acid induces apoptosis and autophagy in the treatment of Tongue Squamous cell carcinomas, Sci. Rep., 7 (2017) 1-11.
  • R.A. Kaskoos, Fatty Acid Composition of Black Cumin Oil from Iraq, J. Med. Plants Res., 5 (2011) 85-89.
Hacettepe Journal of Biology and Chemistry-Cover
  • ISSN: 2687-475X
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1972
  • Yayıncı: Hacettepe Üniversitesi, Fen Fakültesi