Uzaktan algılama ile fay çizgiselliklerinin belirlenmesi: Baklan Grabeni örneği

Fayların belirlenmesi ve özelliklerinin ortaya konulması doğal afet risklerinin belirlenmesi, güvenli şehir altyapısı, büyük mühendislik yapılarının duraylılığı, yeraltı suları ile mineral zonlarının belirlenmesi açısından büyük önem taşımaktadır. Faylar yeryüzünde belirgin çizgisel yapılar oluştururlar ve bunlar genellikle yüzeyden kolayca ayırt edilebilirler. Fayların tespit edilmesi, haritalanması ve ilgili saha çalışmaları oldukça emek yoğun çalışma gerektirmektedir. Saha çalışmalarının yoğunluğunu azaltmak ve daha geniş alandaki yapısal bütünlüğü algılamak için hava fotoğrafları, yükseklik haritaları ve uydu görüntüleri kullanılmaktadır. Arazide sadece faylar değil, karayolu, demiryolu ve insan yapımı çit vb. karşıtlık oluşturan birçok farklı çizgisel yapı bulunmaktadır. Bu çizgiselliklerin tespiti ve analizinde uzaktan algılama görüntüleri yaygın olarak kullanılmaktadır. Bu çalışmada Landsat-7 (ETM+) uydu görüntülerinden yararlanılarak filtreleme, temel bileşenler analizi (TBA), bant oranlama, FCC (False Color Composite) bant kombinasyonları görüntüleme, sonuç çizgisellik haritası ve otomatik çizgisellik çıkarımı yöntemleriyle çizgisellik analizleri yapılmıştır. Elde edilen sonuçlar arazi çalışmalarından elde edilen verilerle karşılaştırılmıştır. Yöntemlerle genel çizgisellik hatları ortak olarak belirlenebilirken, belirlenen nesne sayısında farklılık olduğu, yönteme göre çizgiselliğe ait nesne sayısının değişebildiği ve en fazla nesne sayısının otomatik çizgisellik çıkarımı yöntemi ile üretildiği belirlenmiştir.

Tracing fault lineaments by remote sensing: Baklan Graben’s case

Identifying faults and revealing their characteristics are of great importance in terms of determining natural disaster risks, safe city infrastructure, stability of large engineering structures, groundwater and mineral zones. Faults form distinctive linear structures on the earth and these are usually easily distinguishable from the surface. Identification, mapping and related field studies of faults require a labor-intensive work. Aerial photographs, digital elevation models and aerial images are used to reduce the intensity of fieldwork and to detect the structural integrity of the larger area. There are not only faults in the land, but also many different linear structures such as roads, railroads and man-made fences that form a contrast. Remote sensing images are widely used in the detection and analysis of these lineaments. In this study, lineament analyzes were carried out using filtering, principal component analysis (PCA), band ratio and false color composite displaying, result linearity map and automatic lineament extraction methods on Landsat-7 (ETM+) satellite images as the basis. The results obtained were compared with the data obtained from field studies.

___

  • Akgün, E., İnceöz, M., & Manap, H.S. (2021). Aktif tektonikte uzaktan algılama uygulamaları: Doğu Anadolu fay zonu’ndan bir örnek. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 36(2), 473-482.
  • Baumann, P.R. (2014). History of remote sensing, aerial photography. Geo/SAT2, http://employees.oneonta.edu/baumanpr/geosat2/rs%20history%20i/rs-history-part-1.htm
  • Cihan, M., Saraç, G., & Gökçe, O. (2003). Insights into biaxial extensional tectonics: An example form the Sandıklı Graben, West Anatolia, Turkey. Geological Journal, 38, 47–56.
  • Crippen, R. E. (1988). The dangers of underestimating the importance of data adjustments in band ratioing. International Journal of Remote Sensing, 9, 767-776.
  • Gürbüz, A., Boyraz, S., & Ismael, M.T. (2012). Plio-Quaternary development of Baklan-Dinar Graben: its implications for cross-graben formation in SW Turkey. International Geology Review, 54 (1), 33-5.
  • Jackson, J., (1994), Active tectonics of the Aegean Region. Annual Review of Earth and Planet Sciences, 22, 239-271.
  • Joshi, P.N., Maurya, D.M., & Chamyal, L.S. (2013). Morphotectonic segmentation and spatial variability of neotectonic activity along the Narmada–Son Fault, Western India: Remote sensing and GIS analysis. Geomorphology, (180–181), 292-306, https://doi.org/10.1016/j.geomorph.2012.10.023.
  • Laben, C.A. & Brower, B.V. (2000). Process for enhancing the spatial resolution of multispectral imagery using pan-sharpening. U.S. Patent 6,011,875. Jan 4, 2000
  • Liu, Z., Han, L., Du, C., Cao, H., Guo, J., & Wang, H. (2021). Fractal and multifractal characteristics of lineaments in the Qianhe Graben and its tectonic significance using remote sensing images. Remote Sensing, 13, 587. https://doi.org/10.3390/rs13040587
  • Kaya, Ş., Müftüoğlu, O., & Tüysüz, O. (2004). Tracing the geometry of an active fault using remote sensing and digital elevation model: Ganos segment, North Anatolian Fault zone, Turkey. International Journal of Remote Sensing, 25(19), 3843-3855. https://doi.org/10.1080/01431160310001652394
  • Kırşan, K. (2021). SRTM DEM ve Landsat 7 ETM verileri ile Bingöl-Karlıova arası Doğu Anadolu fay zonunda çizgisellik analizleri. Doğu Coğrafya Dergisi, 26(46), 143-158.
  • Koçal, A., (2004). A methodology for detection and evaluation of lineaments from satellite imagery. [Ms Thesis, Middle East Technical University].
  • Koike, K., Nagano S., & Ohmi, M. (1995). Lineament analysis of satellite images using a Segment Tracing Algorithm (STA). Computers and Geosciences, 21(9), 1091-1104. https://doi.org/10.1016/0098-3004(95)00042-7
  • Kouamé, F., Gioan, P., Biemi, J., & Affian, K. (1999). Méthode de cartographie des discontinuités images extraites d’images satellitales: Exemple de la région semi montagneuse à l’Ouest de la côte d’Ivoire. Revue de Télédétection, 1(2), 139–156.
  • Lillesand, T.M., & Kiefer, R.W. (1999). Remote sensing and image interpretation (4th ed.). Wiley, ISBN-13: 978-0471255154.
  • Marghany, M., & Hashim, M. (2010). Lineament mapping using multispectral remote sensing satellite data. International Journal of the Physical Sciences, 5(10), 1501-1507.
  • Mwaniki, M. W., Moeller M. S., & Schellmann, G. (2015). A comparison of Landsat 8 (OLI) and Landsat 7 (ETM+) in mapping geology and visualising lineaments: A case study of central region Kenya. ISPRS International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-7/W3, 897-903. https://doi.org/10.5194/isprsarchives-XL-7-W3-897-2015.
  • NASA (2022, September 15). What is Remote Sensing. https://www.earthdata.nasa.gov/learn/backgrounders/remote-sensing.
  • O’Leary, D. W., Friedman, J. D., & Pohn, H. A. (1976). Lineament, linear, lineation: Some proposed new standards for old terms. Geological Society of America Bulletin, 87(10), 1463-1469. https://doi.org/10.1130/0016-7606(1976)87<1463:LLLSPN>2.0.CO;2
  • Pour, A. B., & Hashim, M. (2016). Remote sensing analysis of geological structures in Peninsular Malaysia using PALSAR data. 2016 IEEE Int. Geoscience and Remote Sensing Symposium (IGARSS), 6067-6069, https://doi.org/ 10.1109/IGARSS.2016.7730585.
  • Rahnama, M., & Gloaguen, R. (2014). A MATLAB-Based toolbox for tectonic lineament analysis from satellite images and DEMs, Part 1: Line segment detection and extraction. Remote Sensing, 6(7), 5938-5958.
  • Qari, M. Y. H. T. (1991). Application of Landsat TM data to geological studies, AlKhabt area, Southern Arabian Shield. Photogrammetric Engineering and Remote Sensing, 57(4), 421-429.
  • Suzen, M.L., & Toprak, V. (1998). Filtering of satellite images in geological lineament analyses: An application to a fault zone in Central Turkey. International Journal of Remote Sensing, 19(6), 1101–1114. https://doi.org/10.1080/014311698215621.
  • Temiz, H., Poisson, A., Andrieux, J., & Barka, A. (1997). Kinematics of the Plio-Quaternary Burdur-Dinar cross-fault system in SW Anatolia (Turkey). Annales Tectonicae, 11(1-2), 102–113.
  • Thannoun, R. G. (2013). Automatic extraction and geospatial analysis of lineaments and their tectonic significance in some areas of Northern Iraq using remote sensing techniques and GIS. International Journal of Enhanced Research In Science Technology & Engineering, 2(2), https://doi.org/10.13140/RG.2.2.20851.99363.
  • Vanderbrug, G. J. (1976). Line detection in satellite imagery. IEEE Transactions on Geoscience Electronics, 14 (1), 37-44. https://doi.org/10.1109/TGE.1976.294463
  • Won-In K., & Charusiri P. (2003). Enhancement of thematic mapper satellite images for geological mapping of the Cho Dien area, Northern Vietnam. International Journal of Applied Earth Observation and Geoinformation, 4(3), 183-193. https://doi.org/10.1016/S0303-2434(02)00034-X
  • Youan Ta, M., Lasm, T., Jourda, J.P., Kouamé, K.F., & Razack, M. (2008). Cartographie des accidents géologiques par imagerie satellitaire Landsat-7 ETM+et analyse des réseaux de fracture du socle précambrien de la région de Bondoukou (Nord-Est de la Côte d’Ivoire). Télédétection, 8(2), 119–135.
Gümüşhane Üniversitesi Fen Bilimleri Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2011
  • Yayıncı: GÜMÜŞHANE ÜNİVERSİTESİ