Titanyum dioksitin stres faktörleri altında bozunma değerlendirmesi

TiO2 sağlık, gıda, savunma ve enerji gibi birçok sanayi sektöründe kullanılmaktadır. Özellikle organik hibrit güneş pilleri (OHGP) alanındaki uygulamalarda elektron transfer katmanı olarak kullanıldığı bilinmektedir. Ancak OHGP, laboratuvar atmosferi, ışıkta banyosu ve UV ışığı gibi dış stres faktörleri nedeniyle bozulma sorununa sahiptir. OHGP'de kısmi-kararsızlık/kararsızlık sorununun anlaşılabilmesi için hücreyi oluşturan her tabaka için ayrı ayrı incelenmesi gerekmektedir. Bu çalışmada, OHGP uygulamalarında yaygın olarak kullanılan TiO2 tabakası pürüzlü cam taban malzeme üzerine Spin kaplama yöntemi ile büyütülmüştür. TiO2 tabakası, sırasıyla XRD ve fotoiletkenlik yöntemi ile yapısal ve elektriksel olarak karakterize edilmiştir. TiO2 tabakası, organik hibrit güneş pillerinde elektronik kısmi-kararsızlık/kararsızlık neden olduğu belirtilen stres faktörlerine birer birer maruz bırakılarak karakterize edilmiştir. Mobilite-yaşam süresi çarpımı, ışık akısına bağlı fotoiletkenlikten hesaplanmış ve stres faktörlerinden dolayı malzemedeki elektronik kusurlarla ilişkilendirilmiştir. Deneylerdeki bulgular, laboratuvar atmosferinin, tavlama ile ortadan kalkabilen yüzeyle ilgili kusurlar oluşturduğunu göstermektedir. Işık banyosu, UV yaşlanması ve oksijen yaşlanması da bant aralığı enerji konumlarıyla bağlantılı elektronik kusurlar yaratmaktadır. Tavlama uygulaması ile bu kusurlar kısmen ortadan kalkmaktadır.

Degradation evaluation of titanium dioxide under stress factors

TiO2 is used in many sectors of industry such as health, food, defense, and energy. It is a well-known fact that TiO2 is especially used in applications in the field of organic hybrid solar cells (OHSC) as an electron transfer layer in the energy sector. However, the OHSCs have a degradation problem because of atmospheric stress factors such as laboratory atmosphere, prolonged light application (light soaking), and UV light. To understand the meta/instability problem in OHSC, it is required to be examined independently for each layer consisting of the solar cell. In this study, the TiO2 layer, widely used in OHSC applications, was grown on a rough glass substrate using a spin coating method. TiO2 layer was structurally and electrically characterized by XRD and photoconductivity methods respectively. TiO2 layer was characterized by exposure step by step to stress factors that are stated to cause electronic meta/instability in organic hybrid solar cells. Mobility-lifetime products were calculated from the flux-dependent photoconductivity and correlated with the electronic defects in the material due to stress factors. The findings in experiments show the laboratory atmosphere creates surface-related defects that can be eliminated by annealing. Light soaking, UV aging, and oxygen aging also create electronic defects associated with bandgap energy positions. These defects are partially eliminated with an annealing application.

___

  • Akin, S., Akman, E., & Sonmezoglu, S. (2020). FAPbI3- based Perovskite solar cells employing hexyl-based ionic liquid with an efficiency over 20% and excellent long-term stability. Adv Funct Mater. https://doi.org/10.1002/adfm.20200 2964.
  • Aslan, F., Tumbul, A., Göktaş, A., Budakoğlu, R., & Mutlu, İ. H. (2016). Growth of ZnO nanorod arrays by one-step sol-gel process. Journal of Sol-Gel Science and Technology, 80(2), 389-395. https://doi.org/10.1007/s10971-016-4131-z
  • Azmi, R., Hadmojo, W. T., Sinaga, S., Lee, C. L., Yoon, S. C., Jung, I. H., & Jang, S. Y. (2018). High‐efficiency low‐temperature ZnO based perovskite solar cells based on highly polar, nonwetting self‐assembled molecular layers. Advanced Energy Materials, 8(5), 1701683. https://doi.org/10.1002/aenm.201701683
  • Baranowska-Wójcik, E., Szwajgier, D., Oleszczuk, P., & Winiarska-Mieczan, A. (2020). Effects of titanium dioxide nanoparticles exposure on human health—a review. Biological Trace Element Research, 193(1), 118-129. https://doi.org/10.1007/s12011-019-01706-6
  • Bertrand, P. A., & Fleischauer, P. D. (1983). Chemical deposition of TiO2 layers on GaAs. Thin Solid Films, 103(1-3), 167-175. https://doi.org/10.1016/0040-6090(83)90433-9
  • Bhandarkar, S. A., Kompa, A., Murari, M. S., Kekuda, D., & Mohan, R. K. (2021). Investigation of structural and optical properties of spin coated TiO2: Mn thin films. Optical Materials, 118, 111254. https://doi.org/10.1016/j.optmat.2021.111254
  • Burns, G. P. (1989). Titanium dioxide dielectric films formed by rapid thermal oxidation. Journal of applied physics, 65(5), 2095-2097. https://doi.org/10.1063/1.342856
  • Cao, J., Wu, B., Chen, R., Wu, Y., Hui, Y., Mao, B. W., & Zheng, N. (2018). Efficient, hysteresis‐free, and stable perovskite solar cells with ZnO as electron‐transport layer: effect of surface passivation. Advanced Materials, 30(11), 1705596. https://doi.org/10.1002/adma.201705596
  • Castro-Chong, A., Qiu, W., Bastos, J., Yimga, N. T., García-Rodríguez, R., Idígoras, J., Anta, J. A., Aernouts, T., & Oskam, G. (2020). Impact of the implementation of a mesoscopic TiO2 film from a low-temperature method on the performance and degradation of hybrid perovskite solar cells. Solar Energy, 201, 836-845. https://doi.org/10.1016/j.solener.2020.03.041
  • Christians, J. A., Manser, J. S., & Kamat, P. V. (2015). Best practices in perovskite solar cell efficiency measurements. Avoiding the error of making bad cells look good. The journal of physical chemistry letters, 6(5), 852-857. https://doi.org/10.1021/acs.jpclett.5b00289
  • Dorier, M., Béal, D., Marie-Desvergne, C., Dubosson, M., Barreau, F., Houdeau, E., Herlin-Boime, N., & Carriere, M. (2017). Continuous in vitro exposure of intestinal epithelial cells to E171 food additive causes oxidative stress, inducing oxidation of DNA bases but no endoplasmic reticulum stress. Nanotoxicology, 11(6), 751-761. https://doi.org/10.1080/17435390.2017.1349203
  • Dundar, I., Krichevskaya, M., Katerski, A., & Acik, I. O. (2019). TiO2 thin films by ultrasonic spray pyrolysis as photocatalytic material for air purification. Royal Society open science, 6(2), 181578. https://doi.org/10.1098/rsos.181578
  • El-Henawey, M. I., Kubas, M., El-Shaer, A., & Salim, E. (2021). The effect of post-annealing treatment on the structural and optoelectronic properties of solution-processed TiO2 thin films. Journal of Materials Science: Materials in Electronics, 32(16), 21308-21317. https://doi.org/10.1007/s10854-021-06633-8
  • Fuyuki, T., & Matsunami, H. (1986). Electronic properties of the interface between Si and TiO2 deposited at very low temperatures. Japanese Journal of Applied Physics, 25(9R), 1288. https://dx.doi.org/10.1143/JJAP.25.1288
  • Goktas, A., Tumbul, A., Aba, Z., & Durgun, M. (2019). Mg doping levels and annealing temperature induced structural, optical and electrical properties of highly c-axis oriented ZnO: Mg thin films and Al/ZnO: Mg/p-Si/Al heterojunction diode. Thin Solid Films, 680, 20-30. https://doi.org/10.1016/j.tsf.2019.04.024
  • Green, M. A., Ho-Baillie, A., & Snaith, H. J. (2014). The emergence of perovskite solar cells. Nature photonics, 8(7), 506-514. https://doi.org/10.1038/NPHOTON.2014.134
  • Jalali, E., Maghsoudi, S., & Noroozian, E. (2020). A novel method for biosynthesis of different polymorphs of TiO2 nanoparticles as a protector for Bacillus thuringiensis from Ultra Violet. Scientific Reports, 10(1), 1-9. https://doi.org/10.1038/s41598-019-57407-6
  • Kim, H. S., Lee, C. R., Im, J. H., Lee, K. B., Moehl, T., Marchioro, A., Moon, S.J., Humphry-Baker, R., Yum, J., Moser, J.E., Gra¨tzel, M., & Park, N.G. (2012). Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Scientific reports, 2(1), 1-7. https://doi.org/10.1038/srep00591
  • Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N., & Snaith, H. J. (2012). Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science, 338(6107), 643-647. https://doi.org/10.1126/science.1228604
  • Leijtens, T., Eperon, G. E., Pathak, S., Abate, A., Lee, M. M., & Snaith, H. J. (2013). Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells. Nature communications, 4(1), 1-8. https://doi.org/10.1038/ncomms3885
  • Lu, J. P., Wang, J., & Raj, R. (1991). Solution precursor chemical vapor deposition of titanium oxide thin films. Thin Solid Films, 204(1), L13-L17. https://doi.org/10.1016/0040-6090(91)90488-J
  • Nagpal, V. J., Davis, R. M., & Desu, S. B. (1995). Novel thin films of titanium dioxide particles synthesized by a sol-gel process. Journal of materials research, 10(12), 3068-3078. https://doi.org/10.1557/JMR.1995.3068
  • Okimura, K., Maeda, N., & Shibata, A. (1996). Characteristics of rutile TiO2 films prepared by rf magnetron sputtering at a low temperature. Thin solid films, 281, 427-430. https://doi.org/10.1016/0040-6090(96)08659-2
  • Rice, G. W. (1987). Laser‐Driven Pyrolysis: Synthesis of TiO2 from Titanium Isopropoxide. Journal of the American Ceramic Society, 70(5), C-117. https://doi.org/10.1111/j.1151-2916.1987.tb05020.x
  • Schiller, S., Beister, G., Sieber, W., Schirmer, G., & Hacker, E. (1981). Influence of deposition parameters on the optical and structural properties of TiO/sub 2/films produced by reactive dc plasmatron sputtering. Thin Solid Films;(Switzerland), 83(2). https://doi.org/10.1016/0040-6090(81)90673-8
  • Shaikh, J. S., Shaikh, N. S., Sheikh, A. D., Mali, S. S., Kale, A. J., Kanjanaboos, P., Hong, J.K., Kim, J.H., & Patil, P. S. (2017). Perovskite solar cells: In pursuit of efficiency and stability. Materials & Design, 136, 54-80. https://doi.org/10.1016/j.matdes.2017.09.037
  • Shalan, A. E. (2020). Challenges and approaches towards upscaling the assembly of hybrid perovskite solar cells. Materials Advances, 1(3), 292-309. https://doi.org/10.1039/D0MA00128G
  • Simionescu, O. G., Romanițan, C., Tutunaru, O., Ion, V., Buiu, O., & Avram, A. (2019). RF magnetron sputtering deposition of TiO2 thin films in a small continuous oxygen flow rate. Coatings, 9(7), 442. https://doi.org/10.3390/coatings9070442
  • Song, J., Zheng, E., Liu, L., Wang, X. F., Chen, G., Tian, W., & Miyasaka, T. (2016a). Magnesium‐doped Zinc Oxide as Electron Selective Contact Layers for Efficient Perovskite Solar Cells. ChemSusChem, 9(18), 2640-2647. https://doi.org/10.1002/cssc.201600860
  • Song, J., Hu, W., Wang, X. F., Chen, G., Tian, W., & Miyasaka, T. (2016b). HC(NH 2)2PbI3 as a thermally stable absorber for efficient ZnO-based perovskite solar cells. Journal of Materials Chemistry A, 4(21), 8435-8443.https://doi.org/10.1039/C6TA0 1074A
  • Suhail, M. H., Rao, G. M., & Mohan, S. D. C. J. (1992). dc reactive magnetron sputtering of titanium‐structural and optical characterization of TiO2 films. Journal of Applied Physics, 71(3), 1421-1427. https://doi.org/10.1063/1.351264
  • Sun, S. S., Wang, Y. M., & Zhang, A. Q. (2011). Study on anti-ultraviolet radiation aging property of TiO2 modified asphalt. In Advanced materials research , 306, (951-955). https://doi.org/10.4028/www.scientific.net/AMR.306-307.951
  • Sun, H., Peng, T., Liu, B., & Xian, H. (2015). Effects of montmorillonite on phase transition and size of TiO2 nanoparticles in TiO2/montmorillonite nanocomposites. Applied Clay Science, 114, (440-446). https://doi.org/10.1016/j.clay.2015.06.026
  • Tumbul, A., Aslan, F., Demirozu, S., Goktas, A., Kilic, A., Durgun, M., & Zarbali, M. Z. (2018). Solution processed boron doped ZnO thin films: influence of different boron complexes. Materials Research Express, 6(3), 035903. https ://doi.org/10.1088/2053-1591/aaf4d 8
  • Vorotilov, K. A., Orlova, E. V., & Petrovsky, V. I. (1992). Sol-gel TiO2 films on silicon substrates. Thin Solid Films, 207(1-2), 180-184. https://doi.org/10.1016/0040-6090(92)90120-Z
  • Yeung, K. S., & Lam, Y. W. (1983). A simple chemical vapour deposition method for depositing thin TiO2 films. Thin Solid Films, 109(2), 169-178. https://doi.org/10.1016/0040-6090(83)90136-0
  • Yılmaz, G. 2021. Creation and Investigation of Electronic Defects on Methylammonium Lead Iodide (CH3NH3PbI3) Films Depending on Atmospheric Conditions. European Physical Journal D 75(6). https://doi.org/10.1140/ep jd/s10053-021-00167-8
  • Yoko, T., Yuasa, A., Kamiya, K., & Sakka, S. (1991). Sol‐gel‐derived TiO2 film semiconductor electrode for photocleavage of water: preparation and effects of post heating treatment on the photoelectrochemical behavior. Journal of the Electrochemical Society, 138(8), 2279. https://doi.org/10.1149/1.2085961
  • Yoldas, B. E., & O’Keeffe, T. W. (1979). Antireflective coatings applied from metal–organic derived liquid precursors. Applied Optics, 18(18), 3133-3138.https://doi.org/10.1364/AO.18.003133
  • Yoldas, B. E. (1982). Deposition and properties of optical oxide coatings from polymerized solutions. Applied Optics, 21(16), 2960-2964. https://doi.org/10.1364/AO.21.002960
  • Zaki, A. H., Shalan, A. E., El-Shafeay, A., Gadelhak, Y. M., Ahmed, E., Abdel-Salam, M. O., Sobhi, M., & El-dek, S. I. (2020). Acceleration of ammonium phosphate hydrolysis using TiO2 microspheres as a catalyst for hydrogen production. Nanoscale Advances, 2(5), 2080-2086. https://doi.org/10.1039/D0NA00204F
  • Zhang, S. Y. F. D. E., Zhu, Y. F., & Brodie, D. E. (1992). Photoconducting TiO2 prepared by spray pyrolysis using TiCl4. Thin Solid Films, 213(2), 265-270. https://doi.org/10.1016/0040-6090(92)90292-J
  • Zhang, H., Yang, H., Shentu, B., Chen, S., & Chen, M. (2018). Effect of titanium dioxide on the UV‐C ageing behavior of silicone rubber. Journal of Applied Polymer Science, 135(14), 46099. https://doi.org/10.1002/app.46099
  • Zhou, H., Shi, Y., Dong, Q., Zhang, H., Xing, Y., Wang, K., Du, Y., & Ma, T. (2014). Hole-conductor-free, metal-electrode-free TiO2/CH3NH3PbI3 heterojunction solar cells based on a low-temperature carbon electrode. The journal of physical chemistry letters, 5(18), 3241-3246. https://doi.org/10.1021/jz5017069
Gümüşhane Üniversitesi Fen Bilimleri Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2011
  • Yayıncı: GÜMÜŞHANE ÜNİVERSİTESİ