Katodik ark PVD yöntemi ile TiN kaplanmış 316L paslanmaz çelik implant malzemesinin elektrokimyasal ve ıslanabilirlik özelliklerinin belirlenmesi

Bu çalışmada, biyomalzeme olarak kullanılan 316L paslanmaz çeliğin korozyon direnci ve hidrofobik özelliklerinin iyileştirilmesi amacıyla TiN filmler katodik ark fiziksel buhar biriktirme (CAPVD) yöntemi ile yüzeye kaplanmıştır. Kaplanmış numunelerin yüzey morfolojisi, yüzey bileşimi, korozyon direnci ve ıslanabilirliği karakterize edilmiş ve kaplamaların karakterizasyonu XRD, SEM ve EDS ile yapılmıştır. Yapay vücut sıvısı (SBF) çözeltisinde yapılan elektrokimyasal deneyler sonrasında kaplama filminin korozyon direncini artırdığı görülmüştür. Ayrıca, işlemsiz ve kaplanmış numunelerin ıslanabilirlik ve serbest yüzey enerjisi özelliklerinin belirlenmesinde saf su, hekzadekan, etilen glikol ve SBF çözeltileri ile temas açıları ölçümleri alınmıştır. Yüzeylerin kaplama filmi sonrasında hidrofobik ve oleofobik özellikleri elde edilmiş olup, SBF çözeltisi ile yapılan temas açısı ölçüm sonrasında temas açısı değeri 92°’den 119°’ye kadar artmıştır. İşlemsiz ve TiN kaplanmış paslanmaz çelik numunelerin serbest yüzey enerjisi değerleri ölçülen temas açısı değerlerine göre sırasıyla 26.7 mN/m ve 18.5 mN/m olarak hesaplanmıştır.

Determination of electrochemical and wettability properties of TiN coated 316L stainless steel implant material by cathodic arc PVD method

In this study, TiN films were coated on the surface by cathodic arc physical vapor deposition (CAPVD) method in order to improve the corrosion resistance and hydrophobic properties of 316L stainless steel, which is used as a biomaterial. The surface morphology, surface composition, corrosion resistance, and wettability of the coated samples were characterized and the characterization of the coatings was done by XRD, SEM and EDS. After electrochemical experiments in simulated body fluid ( SBF) solution, it was observed that the corrosion resistance of the coating film increased. In addition, contact angle measurements were taken with distilled water, n-hexadecane, ethylene glycol, and SBF solutions to determine the wettability and free surface energy properties of untreated and coated samples. The hydrophobic and oleophobic properties of the surfaces were obtained after the coating film, and the contact angle value increased from 92° to 119° after the contact angle measurement with the SBF solution. According to the measured contact angle values, the surface free energy values of the untreated and TiN coated stainless steel samples were calculated as 26.7 mN/m and 18.5 mN/m, respectively, according to the measured contact angle values.

___

  • Al-Hamarneh, I., Pedrow ,P., Eskhan, A., & Abu-Lail, N. (2012). Hydrophilic property of 316L stainless steel after treatment by atmospheric pressure corona streamer plasma using surface-sensitive analyses. Applied Surface Science, 259, 424–32. http://dx.doi.org/10.1016/j.apsusc.2012.07.061
  • Černe, L., Simončič, B., & Željko, M. (2008). The influence of repellent coatings on surface free energy of glass plate and cotton fabric. Applied Surface Science, 254(20), 6467–77. https://doi.org/10.1016/j.apsusc.2008.04.007
  • Chou, W.J., Yu, G.P., & Huang, J.H. (2001). Corrosion behavior of TiN-coated 304 stainless steel. Corrosion Science, 43(11), 2023–2035. https://doi.org/10.1016/S0010-938X(01)00010-5
  • Datta, S., Das, M., Balla, V.K., Bodhak, S., & Murugesan, V.K. (2018). Mechanical, wear, corrosion and biological properties of arc deposited titanium nitride coatings. Surface and Coatings Technology, 344, 214–22. https://doi.org/10.1016/j.surfcoat.2018.03.019
  • Dwivedi, S., Rai Dixit, A., & Kumar Das, A. (2022). Wetting behavior of selective laser melted (SLM) bio-medical grade stainless steel 316L. Materials Today: Proceedings, 56, 46–50. https://doi.org/10.1016/j.matpr.2021.12.046
  • Estrada-Martínez, J., Reyes-Gasga, J., García-García, R., Vargas-Becerril, N., Zapata-Torres, M.G., & Gallardo-Rivas, N.V. (2017). Wettability modification of the AISI 304 and 316 stainless steel and glass surfaces by titanium oxide and titanium nitride coating. Surface and Coatings Technology, 330, 61–70. http://dx.doi.org/10.1016/j.surfcoat.2017.09.059
  • Hussein, M.A., Adesina A.Y., Kumar A.M., Sorour A.A., Ankah N., & Al-Aqeeli N. (2020). Mechanical, in-vitro corrosion, and tribological characteristics of TiN coating produced by cathodic arc physical vapor deposition on Ti20Nb13Zr alloy for biomedical applications. Thin Solid Films, 709, 138183. https://doi.org/10.1016/j.tsf.2020.13818
  • Iqbal, Z., Rauf, A., Ali, A., Ul Haq, A., & Khan, A.Q. (1998). Cathodic arc deposition of titanium nitride coatings on commercial steels. Vacuum, 51(4), 629–633. https://doi.org/10.1016/S0042-207X(98)00263-2
  • Iversen. A., & Leffler, B. (2010). Aqueous corrosion of stainless steels, Shreir's corrosion, (4nd ed.). 1802–1878. Elsevier Science.
  • Khalajabadi, S.Z., Abdul Kadir, M.R., Izman S., & Mohd Yusop, M.Z. (2015). Facile fabrication of hydrophobic surfaces on mechanically alloyed-Mg/HA/TiO2/MgO bionanocomposites. Applied Surface Science, 324, 380–92. http://dx.doi.org/10.1016/j.apsusc.2014.10.158
  • Khanchaiyaphum, S., Saikaew, C., Wisitsoraat ,A., & Surinphong, S. (2017). Wear behaviours of filtered cathodic arc deposited TiN, TiAlSiN and TiCrAlSiN coatings on AISI 316 stainless steel fishing net-weaving machine components under dry soft-sliding against nylon fibres. Wear, 390–391,146–54. http://dx.doi.org/10.1016/j.wear.2017.07.018
  • Kokubo, T., & Takadama, H. (2006). How useful is SBF in predicting in vivo bone bioactivity?. Biomaterials, 27(15), 2907–2915. https://doi.org/10.1016/j.biomaterials.2006.01.017
  • Mani, S.P, Agilan, P., Kalaiarasan, M., Ravichandran, K., Rajendran, N., & Meng, Y. (2021). Effect of multilayer CrN/CrAlN coating on the corrosion and contact resistance behavior of 316L SS bipolar plate for high temperature proton exchange membrane fuel cell. Journal of Materials Science and Technology, 97, 134–46. https://doi.org/10.1016/j.jmst.2021.04.043
  • Mei, H., Zhao, S., Chen, W., Wang Q., & Lıang, H. (2018). Microstructure and residual stress of TiN films deposited at low temperature by arc ion plating. Transactions of Nonferrous Metals Society of China, 28(7), 1368–76. http://dx.doi.org/10.1016/S1003-6326(18)64775-2
  • Pana, I., Braic, V., Dinu, M., Massima Mouele, E.S, Parau, A.C, Petrik L.F., & Mariana Braic, M. (2020). In vitro corrosion of titanium nitride and oxynitride-based biocompatible coatings deposited on stainless steel, Coatings, 10(8), 710. https://doi.org/10.3390/coatings10080710
  • Ruiz, A., Timke, T., Van de Sande, A., Heftrich, T., Novotny, R., & Austin, T. (2016). Corrosion and microstructural analysis data for AISI 316L and AISI 347H stainless steels after exposure to a supercritical water environment. Data in Brief, 7, 1341–1348. http://dx.doi.org/10.1016/j.dib.2016.04.013
  • Santecchia, E., Hamouda, A.M.S., Musharavatiİ F., Zalnezhadİ E., Cabibboİ M., & Spigarelliİ S. (2015) Wear resistance investigation of titanium nitride-based coatings. Ceramics International, 41(9), 10349–10379. http://dx.doi.org/10.1016/j.ceramint.2015.04.152
  • Shiravi Khoozani, J., Hosseini, S. H, & Fordoei, M.E. (2020). Comparison of the effect of arched and through magnetic field configurations in cathodic arc deposition. Surface Engineering, 36(5), 547–552. https://doi.org/10.1080/02670844.2019.1653598
  • Stern, M., & Geary, A.L. (1957). Electrochemical Polarization: I . A Theoretical Analysis of the Shape of Polarization Curves. Journal of The Electrochemical Society, 104(12), 751. https://doi.org/10.1149/1.2428496
  • Vengesa, Y., Fattah-alhosseini, A., Elmkhah, H., & Imantalab, O. (2022). Influence of post-deposition annealing temperature on morphological, mechanical and electrochemical properties of CrN/CrAlN multilayer coating deposited by cathodic arc evaporation- physical vapor deposition process. Surface and Coatings Technology, 432, 128090. https://doi.org/10.1016/j.surfcoat.2022.128090
  • Wathanyu, K., Tuchinda, K., Daopiset, S., Sirivisoot, S., & Surinpong, S. (2020). Microstructure, hardness, adhesion and corrosion properties ofTi and TiN films on stainless steel 316L. Key Engineering Materials, 856, 66–75. https://doi.org/10.4028/www.scientific.net/KEM.856.66
  • Xie, J.J., Ningyu. H., Sun, X., & Yang Zhan., J. (2020). Corrosion behavior of 316L stainless Steel under Cl- corrosion medium. IOP Conference Series: Materials Science and Engineering, 711(1), 012058. https://doi.org/10.1088/1757-899X/711/1/012058
  • Yazıcı, M., Kovacı, H., Yetim, A.F., & Çelik A. (2018). Structural, mechanical and tribological properties of Ti and TiN coatings on 316L stainless steel. Ceramics International, 44(12), 14195–14201. https://doi.org/10.1016/j.ceramint.2018.05.022
  • Zhang, L., & Wang, J. (2014). Effect of dissolved oxygen content on stress corrosion cracking of a cold worked 316L stainless steel in simulated pressurized water reactor primary water environment. Journal of Nuclear Materials, 446(1–3), 15–26. http://dx.doi.org/10.1016/j.jnucmat.2013.11.027
  • Zhang, G., Hu, J., Liu, G., & Luo, H. (2013). Bi-functional random copolymers for one-pot fabrication of superamphiphobic particulate coatings. Journal of Materials Chemistry A, 1(20), 6226-6237. https://doi.org/10.1039/C3TA10722A
  • Zhu, Z., Yin, W., Wang, D., Sun, H., Chen, K., & Yang, B. (2020). The role of surface roughness in the wettability and floatability of quartz particles. Applied Surface Science, 527, 146799. https://doi.org/10.1016/j.apsusc.2020.146799
Gümüşhane Üniversitesi Fen Bilimleri Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2011
  • Yayıncı: GÜMÜŞHANE ÜNİVERSİTESİ