Evaporatör giriş-çıkış konumunun PV-T performansı üzerindeki etkisinin sayısal analizi

Küresel enerji tüketimindeki ve karbondioksit emisyonlarındaki artış, yenilenebilir enerji kaynaklarına olan ilgiyi artırmaktadır. Yenilenebilir enerji kaynaklarının başında güneş enerjisi gelmektedir ve çalışma esnasında çeşitli sebeplerle hücre verimliliğinin düşmesi bu teknolojinin önündeki engeldir. Fotovoltaik hücrelerin çalışma sırasında sıcaklığının artması hücre veriminin düşmesine neden olmaktadır. Fotovoltaik hücre sıcaklığının kontrolü hem hücrelerin ekonomik ömrünü uzatmak hem de sistemin verimini artırmak açısından çok önemlidir. Akışkanın buharlaştırıcıya giriş ve çıkış konumunun ısı transferine etkisi bilinmektedir ancak PV-T (fotovoltaik-termal) sisteminin verimini artırmak için yürütülen çalışmalarda bu etki incelenmemiştir. Bu çalışmada, cebri hava sirkülasyonu ile soğutulan bir PV-T evaporatörün sistem verimlilik parametreleri ve COP (performans katsayısı) değerleri, HAD (hesaplamalı akışkanlar dinamiği) analizi ile incelenmiştir. Analizler, tek dizide, üç farklı debide (0.0125 kg/s, 0.0250 kg/s, 0.0500 kg/s), dokuz farklı buharlaştırıcıya giriş-çıkış pozisyonu (CC, CL, CR, RC, RL, RR, LC, LL, LR) ve 1000 W/m2 sabit radyasyon için yürütülmüştür. En iyi ve en kötü giriş-çıkış konumları arasında %20'nin üzerinde bir toplam verimlilik farkı ve %25'in üzerinde bir genel COP farkı olduğu belirlenmiştir. En yüksek toplam ve termal verim RR koşulu için, en yüksek elektriksel verim LR koşulu için elde edilmiştir ancak uzun vadede en yüksek verim LC tasarımı ile elde edilebilmektedir. Çalışmada ayrıca CL koşulu için en yüksek COP değerleri ve RR koşulu için en kötü COP değerleri hesaplanmıştır.

Numerical analysis of the effect of the evaporator inlet-outlet position on the PV-T performance

The increase in global energy consumption and carbon dioxide emissions increase the interest in renewable energy sources. Solar energy is at the forefront of renewable energy sources, and the decrease in cell efficiency due to various reasons during operation is an obstacle to this technology. Increasing the temperature of photovoltaic cells during operation causes a decrease in cell efficiency. Control of photovoltaic cells temperature is crucial in terms of both prolonging the economic life of the cells and increasing the efficiency of the system. The effect of the evaporator inlet and outlet position of the fluid on the heat transfer is known, but this effect was not examined in the studies carried out to increase the efficiency of the PV-T (photovoltaic–thermal) system. In the current study, the system efficiency parameters and COP (coefficient of performance) values of a PV-T evaporator cooled by forced air circulation were investigated by CFD (computational fluid dynamics) analysis. The analyzes were carried out in a single array for three different flow rates (0.0125 kg/s, 0.0250 kg/s, 0.0500 kg/s) and nine different evaporator inlet-outlet positions (CC, CL, CR, RC, RL, RR, LC, LL, LR), constant radiation of 1000 W/m^2. It was determined that there is a total efficiency difference of over 20% and an overall COP difference of over 25% between the best and worst inlet-outlet positions. The highest total and thermal efficiency were obtained for the RR condition, and the highest electrical efficiency was obtained for the LR condition but in the long-term, the highest efficiency can be achieved with the LC design. In the study also the highest COP values were calculated for the CL condition and the worst COP values for the RR condition.

___

  • Abdullah, A. L., Misha, S., Tamaldin, N., Rosli, M. A. M., & Sachit, F. A. (2019). A Review: Parameters affecting the PVT collector performance on the thermal, electrical, and overall efficiency of PVT system. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 60(2), 191-232. https://akademiabaru.com/submit/index.php/arfmts/article/view/2643/1707
  • Adinoyi, M. J., & Said, S. A. M. (2013). Effect of dust accumulation on the power outputs of solar photovoltaic modules. Renewable Energy, 60, 633-636. https://doi.org/10.1016/j.renene.2013.06.014
  • Alessandro, M., Niccolao, A., & Fabrizio, L. (2021). Photovoltaic-thermal solar-assisted heat pump systems for building applications: Integration and design methods. Energy and Built Environment. https://doi.org/10.1016/j.enbenv.2021.07.002
  • Ali, K., Khan, S. A., & Jafri, M. Z. M. (2014). Effect of double layer (SiO2/TiO2) anti-reflective coating on silicon solar cells. International Journal of Electrochemical Science, 9(12), 7865-7874. http://www.electrochemsci.org/papers/vol9/91207865.pdf
  • Alshawaf, M., Poudineh, R., & Alhajeri, N. S. (2020). Solar PV in Kuwait: The effect of ambient temperature and sandstorms on output variability and uncertainty. Renewable and Sustainable Energy Reviews, 134, 110346. https://doi.org/10.1016/j.rser.2020.110346
  • Ansys, I. (2009). Ansys fluent 12.0 user’s guide. New Hampshire: Ansys Inc, 35-47. https://www.afs.enea.it/project/neptunius/docs/fluent/html/ug/main_pre.htm
  • Arslan, E., Aktaş, M., & Can, Ö. F. (2020). Experimental and numerical investigation of a novel photovoltaic thermal (PV/T) collector with the energy and exergy analysis. Journal of Cleaner Production, 276, 123255. https://doi.org/10.1016/j.jclepro.2020.123255
  • Atmaca, M., & Akiskalioğlu, E. (2020). PV/T sisteminde cam kapak özelliklerinin elektriksel ve termal verime etkilerinin araştırılması. Bartın University International Journal of Natural and Applied Sciences, 3(2), 52-65. https://dergipark.org.tr/tr/pub/jonas/issue/57209/766617
  • Atmaca, M., & Pektemir, I. Z. (2019). An investigation on the effect of the total efficiency of water and air used together as a working fluid in the photovoltaic thermal systems. Processes, 7(8), 516. https://doi.org/10.3390/pr7080516
  • Atmaca, M., & Pektemir, İ. Z. (2019). PV panelinin altına serbest olarak yerleştirilen siyah emici plakanın termal kapasitesinin belirlenmesi. International Journal of Advances in Engineering and Pure Sciences, 31(4), 280-285. https://doi.org/10.7240/jeps.470175
  • Atmaca, M., & Pektemir, İ. Z. (2020). Photovoltaic-thermal system for building application: A case study. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1-18. https://doi.org/10.1080/15567036.2020.1817180
  • Bakari, R., Minja, R. J. A., & Njau, K. N. (2014). Effect of glass thickness on performance of flat plate solar collectors for fruits drying. Journal of Energy, 2014. https://doi.org/10.1155/2014/247287
  • Belaidi, A., Dittrich, T., Kieven, D., Tornow, J., Schwarzburg, K., & Lux‐Steiner, M. (2008). Influence of the local absorber layer thickness on the performance of ZnO nanorod solar cells. Physica Status Solidi, 2(4), 172-174. https://doi.org/10.1002/pssr.200802092
  • Chegaar, M., Ouennoughi, Z., & Guechi, F. (2004). Extracting dc parameters of solar cells under illumination. Vacuum, 75(4), 367-372. https://doi.org/10.1016/j.vacuum.2004.05.001
  • Chein, R., & Chen, J. (2009). Numerical study of the inlet/outlet arrangement effect on microchannel heat sink performance. International Journal of Thermal Sciences, 48(8), 1627-1638. https://doi.org/10.1016/j.ijthermalsci.2008.12.019
  • Cuce, E., & Cuce, P. M. (2014). Improving thermodynamic performance parameters of silicon photovoltaic cells via air cooling. International Journal of Ambient Energy, 35(4), 193-199. https://doi.org/10.1080/01430750.2013.793481
  • Cuce, E., Cuce, P. M., & Bali, T. (2013). An experimental analysis of illumination intensity and temperature dependency of photovoltaic cell parameters. Applied Energy, 111, 374-382. https://doi.org/10.1016/j.apenergy.2013.05.025
  • Delfani, S., Esmaeili, M., & Karami, M. (2019). Application of artificial neural network for performance prediction of a nanofluid-based direct absorption solar collector. Sustainable Energy Technologies and Assessments, 36, 100559. https://doi.org/10.1016/j.seta.2019.100559
  • Dhass, A. D., Kumar, R. S., Lakshmi, P., Natarajan, E., & Arivarasan, A. (2020). An investigation on performance analysis of different PV materials. Materials Today: Proceedings, 22, 330-334. https://doi.org/10.1016/j.matpr.2019.06.005
  • Do Ango, A. C. M., Médale, M., & Abid, C. (2013). Optimization of the design of a polymer flat plate solar collector. Solar Energy, 87, 64-75. https://doi.org/10.1016/j.solener.2012.10.006
  • Dondapati, R. S., Agarwal, R., Saini, V., Vyas, G., & Thakur, J. (2018). Effect of glazing materials on the performance of solar flat plate collectors for water heating applications. Materials Today: Proceedings, 5(14), 27680-27689. https://doi.org/10.1016/j.matpr.2018.10.002
  • Du, B., Hu, E., & Kolhe, M. (2012). Performance analysis of water cooled concentrated photovoltaic (CPV) system. Renewable and sustainable energy reviews, 16(9), 6732-6736. https://doi.org/10.1016/j.rser.2012.09.007
  • Ekramian, E., Etemad, S. G., & Haghshenasfard, M. (2014). Numerical analysis of heat transfer performance of flat plate solar collectors. Journal of Fluid Flow, Heat and Mass Transfer (JFFHMT), 1, 38-42. https://doi.org/10.11159/jffhmt.2014.006
  • Ettah, E. B., Udoimuk, A. B., Obiefuna, J. N., & Opara, F. E. (2012). The effect of relative humidity on the efficiency of solar panels in Calabar, Nigeria. Universal Journal of Management and Social Sciences, 2(3), 8-11. https://www.semanticscholar.org/paper/The-Effect-of-Relative-Humidity-on-the-Efficiency-Ettah-Udoimuk/55e0a5bbacaea26d012ad99b0291240935813b47
  • Evans, D. L. (1981). Simplified method for predicting photovoltaic array output. Solar Energy, 27(6), 555-560. https://doi.org/10.1016/0038-092X(81)90051-7
  • Fesharaki, V. J., Dehghani, M., Fesharaki, J. J., & Tavasoli, H. (2011). The effect of temperature on photovoltaic cell efficiency. Proceedings of the 1st International Conference on Emerging Trends in Energy Conservation 1-6. https://research.iaun.ac.ir/pd/jjfesharakiold/pdfs/PaperC_4124.pdf
  • Fluent, A. (2013). Ansys fluent theory guide; Ansys Inc., Release, 15. https://www.afs.enea.it/project/neptunius/docs/fluent/html/th/main_pre.htm
  • Ghamari, D. M., & Worth, R. A. (1992). The effect of tube spacing on the cost-effectiveness of a flat-plate solar collector. Renewable Energy, 2(6), 603-606. https://doi.org/10.1016/0960-1481(92)90025-X
  • Hamrouni, N., Jraidi, M., & Chérif, A. (2008). Solar radiation and ambient temperature effects on the performances of a PV pumping system. Journal of Renewable Energies, 11(1), 95-106. https://www.asjp.cerist.dz/en/article/119583
  • Handoyo, E. A., & Ichsani, D. (2013). The optimal tilt angle of a solar collector. Energy Procedia, 32, 166-175. https://doi.org/10.1016/j.egypro.2013.05.022
  • Hassan, H., & Abo-Elfadl, S. (2018). Experimental study on the performance of double pass and two inlet ports solar air heater (SAH) at different configurations of the absorber plate. Renewable Energy, 116, 728-740. https://doi.org/10.1016/j.renene.2017.09.047
  • Ji, J., Han, J., Chow, T.-t., Yi, H., Lu, J., He, W., & Sun, W. (2006). Effect of fluid flow and packing factor on energy performance of a wall-mounted hybrid photovoltaic/water-heating collector system. Energy and Buildings, 38(12), 1380-1387. https://doi.org/10.1016/j.enbuild.2006.02.010
  • Jiang, H., Lu, L., & Sun, K. (2011). Experimental investigation of the impact of airborne dust deposition on the performance of solar photovoltaic (PV) modules. Atmospheric Environment, 45(25), 4299-4304. https://doi.org/10.1016/j.atmosenv.2011.04.084
  • Joshi, A. S., Tiwari, A., Tiwari, G. N., Dincer, I., & Reddy, B. V. (2009). Performance evaluation of a hybrid photovoltaic thermal (PV/T)(glass-to-glass) system. International Journal of Thermal Sciences, 48(1), 154-164. https://doi.org/10.1016/j.ijthermalsci.2008.05.001
  • Kalkan, C., Ezan, M. A., Duquette, J., Yilmaz Balaman, Ş., & Yilanci, A. (2019). Numerical study on photovoltaic/thermal systems with extended surfaces. International Journal of Energy Research, 43(10), 5213-5229. https://doi.org/10.1002/er.4477
  • Kandilli, C., Külahlı, G., & Savcı, G. (2013). Fotovoltaik termal (PVT) sistem 2D termodinamik modellenmesi ve deneysel sonuçlarla karşılaştırılması. 11. Ulusal Tesisat Mühendisliği Kongresi, 17, 20. http://www1.mmo.org.tr/etkinlikler/tesisat/etkinlik_bildirileri_detay.php?etkinlikkod=246&bilkod=1857
  • Kehrer, M., Künzel, H. M., & Sedlbauer, K. (2003). Ecological insulation materials-does sorption moisture affect their insulation performance? Journal of Thermal Envelope and Building Science, 26(3), 207-212. https://doi.org/10.1177/109719603027869
  • Kennedy, C. E. (2002). Review of mid-to high-temperature solar selective absorber materials. https://www.nrel.gov/docs/fy02osti/31267.pdf
  • Kim, Y., & Seo, T. (2007). Thermal performances comparisons of the glass evacuated tube solar collectors with shapes of absorber tube. Renewable Energy, 32(5), 772-795. https://doi.org/10.1016/j.renene.2006.03.016
  • Koech, R. K., Ondieki, H. O., Tonui, J. K., & Rotich, S. K. (2012). A steady state thermal model for photovoltaic/thermal (PV/T) system under various conditions. International Journal of Scientific & Technology Research, 1(11), 1-5. http://www.ijstr.org/final-print/dec2012/A-Steady-State-Thermal-Model-For-Photovoltaicthermal-Pvt-System-Under-Various-Conditions.pdf
  • Lu, S., Liang, R., Zhang, J., & Zhou, C. (2019). Performance improvement of solar photovoltaic/thermal heat pump system in winter by employing vapor injection cycle. Applied Thermal Engineering, 155, 135-146. https://doi.org/10.1016/j.applthermaleng.2019.03.038
  • Malvi, C. S., Gupta, A., Gaur, M. K., Crook, R., & Dixon-Hardy, D. W. (2017). Experimental investigation of heat removal factor in solar flat plate collector for various flow configurations. International Journal of Green Energy, 14(4), 442-448. https://doi.org/10.1080/15435075.2016.1268619
  • Masters, G. M. (2004). Photovoltaic materials and electrical characteristics. Renewable and Efficient Electric Power Systems. https://doi.org/10.1002/0471668826.ch8
  • Moodley, P. (2021). 1 - Sustainable biofuels: opportunities and challenges. In Sustainable Biofuels (pp. 1-20). Academic Press. https://doi.org/10.1016/B978-0-12-820297-5.00003-7
  • Morice, C. P., Kennedy, J. J., Rayner, N. A., & Jones, P. D. (2012). Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 data set. Journal of Geophysical Research: Atmospheres, 117(D8). https://doi.org/10.1029/2011JD017187
  • Nahar, A., Hasanuzzaman, M., & Rahim, N. A. (2017). Numerical and experimental investigation on the performance of a photovoltaic thermal collector with parallel plate flow channel under different operating conditions in Malaysia. Solar Energy, 144, 517-528. https://doi.org/10.1016/j.solener.2017.01.041
  • Omeroğlu, G. (2018). Fotovoltaik-Termal (PV/T) sistemin sayısal (CFD) ve deneysel analizi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 30(1), 161-167. https://dergi.firat.edu.tr/index.php/mbd/article/view/505
  • Ozakin, A. N., & Kaya, F. (2019). Effect on the exergy of the PVT system of fins added to an air-cooled channel: A study on temperature and air velocity with Ansys Fluent. Solar Energy, 184, 561-569. https://doi.org/10.1016/j.solener.2019.03.100
  • Ozakin, A. N., Yakut, K., & Khalaji, M. N. (2020). Performance analysis of photovoltaic-heat pump (PV/T) combined systems: A comparative numerical study. Journal of Solar Energy Engineering, 142(2). https://doi.org/10.1115/1.4045313
  • Pottler, K., Sippel, C. M., Beck, A., & Fricke, J. (1999). Optimized finned absorber geometries for solar air heating collectors. Solar Energy, 67(1-3), 35-52. https://doi.org/10.1016/S0038-092X(00)00036-0
  • Rahman, S., Sarker, M. R. I., Mandal, S., & Beg, M. R. A. (2018). Experimental and numerical analysis of a stand-alone PV/T system to improve its efficiency. Journal of Fundamentals of Renewable Energy and Applications, 1, 28-33. https://doi.org/10.4172/2090-4541.1000253
  • Richert, T., Riffelmann, K., & Nava, P. (2015). The influence of solar field inlet and outlet temperature on the cost of electricity in a molten salt parabolic trough power plant. Energy Procedia, 69, 1143-1151. https://doi.org/10.1016/j.egypro.2015.03.184
  • Ritchie, H., & Roser, M. (2020). CO₂ and greenhouse gas emissions. Our World In Data. https://ourworldindata.org/co2-and-other-greenhouse-gas-emissions
  • Rizk, J., & Chaiko, Y. (2008). Solar tracking system: More efficient use of solar panels. World Academy of Science, Engineering and Technology, 41(2008), 313-315. https://www.semanticscholar.org/paper/Solar-Tracking-System%3A-More-Efficient-Use-of-Solar-Rizk-Chaiko/5594b5bbb72021eafd8a96452b6bb551d8208094
  • Sekhar, Y. R., Sharma, K. V., & Rao, M. B. (2009). Evaluation of heat loss coefficients in solar flat plate collectors. ARPN Journal of Engineering and Applied Sciences, 4(5), 15-19. https://www.semanticscholar.org/paper/Evaluation-Of-Heat-Loss-Coefficients-In-Solar-Flat-Sekhar-Sharma/d2f0a067b0ade05d73ab14164400eb7fba3a9d5f
  • Song, Z., Ji, J., Zhang, Y., Cai, J., & Li, Z. (2021). Experimental and numerical investigation on a photovoltaic heat pump with two condensers: A micro-channel heat pipe/thermoelectric generator condenser and a submerged coil condenser. Energy, 122525. https://doi.org/10.1016/j.energy.2021.122525
  • Tripanagnostopoulos, Y., Nousia, T. H., Souliotis, M., & Yianoulis, P. (2002). Hybrid photovoltaic/thermal solar systems. Solar Energy, 72(3), 217-234. https://doi.org/10.1016/S0038-092X(01)00096-2
  • Yakut, R. (2021). A numerical study on determining the effect of original evaporator design on DX-SAHP system performance. European Journal of Science and Technology(28), 1052-1055. https://doi.org/10.31590/ejosat.1012486
  • Yang, Y.-T., & Peng, H.-S. (2009). Numerical study of the heat sink with un-uniform fin width designs. International Journal of Heat and Mass Transfer, 52(15-16), 3473-3480. https://doi.org/10.1016/j.ijheatmasstransfer.2009.02.042
  • Zadeh, P. M., Sokhansefat, T., Kasaeian, A. B., Kowsary, F., & Akbarzadeh, A. (2015). Hybrid optimization algorithm for thermal analysis in a solar parabolic trough collector based on nanofluid. Energy, 82, 857-864. https://doi.org/10.1016/j.energy.2015.01.096
  • Zhang, X., Zhao, X., Shen, J., Xu, J., & Yu, X. (2014). Dynamic performance of a novel solar photovoltaic/loop-heat-pipe heat pump system. Applied Energy, 114, 335-352. https://doi.org/10.1016/j.apenergy.2013.09.063
  • Zhou, J., Zhao, X., Ma, X., Qiu, Z., Ji, J., Du, Z., & Yu, M. (2016). Experimental investigation of a solar driven direct-expansion heat pump system employing the novel PV/micro-channels-evaporator modules. Applied Energy, 178, 484-495. https://doi.org/10.1016/j.apenergy.2016.06.063
  • Zondag, H. A. (2008). Flat-plate PV-Thermal collectors and systems: A review. Renewable and Sustainable Energy Reviews, 12(4), 891-959. https://doi.org/10.1016/j.rser.2005.12.012
  • Zwalnan, S. J., Caleb, N. N., Mangai, M. M., & Sanda, N. Y. (2021). Comparative analysis of thermal performance of a solar water heating system based on the serpentine and risers-head configurations. Journal of Renewable Energy and Environment, 8(2), 21-30. https://doi.org/10.30501/jree.2020.251190.1150
Gümüşhane Üniversitesi Fen Bilimleri Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2011
  • Yayıncı: GÜMÜŞHANE ÜNİVERSİTESİ