TAHILLARDA SİNAPİK ASİT

Tam tane tahıllar diyet lifi, vitaminler, mineraller ve birçok biyoaktif bileşenler için iyi bir kaynaktır. Biyoaktif bileşenler tahıllar ve tahıl ürünleri gibi birçok gıdada küçük miktarlarda bulunan ekstra beslenme bileşenleridir. Bu maddeler insan sağlığına oldukça faydalıdır ancak insan vücudu için esansiyel değildir. Ferulik asit, sinapik asit ve p-koumarik asit tahıllarda en yaygın olarak bulunan fenolik asitlerdir. Sinapik asit tahıl tanesin dış tabakalarında lokalize olmuş bir sinnamik asit türevidir. Antioksidan, antimikrobiyel, antiinflamatuar ve antikanser etkiye sahip olan sinapik asit tahıllarda önemli biyoaktif bileşenlerden biridir. Sinapik asit ve türevlerinin güçlü antioksidan özellikleri nedeniyle gıda işleme, kozmetik sanayi ve ilaç endüstrisinde kullanımı önerilmektedir.

SINAPIC ACID IN CEREALS

Whole grain cereals are a good source of dietary fiber, vitamins, minerals and bioactive compounds. Bioactive compounds are extra nutritional compounds that typically occur in small quantities in many foods such as cereals and cereal products. These substances are very beneficial to human health but are not essential for the human body. Common phenolic acids found in the grain products were ferulic acid, sinapic acid, and p-coumaric acid. Sinapic acid is a cinnamic acid derivative and is concentrated in the outer layers of the grain. Sinapic acid is one of important bioactive compounds in cereals and shows antioxidant, antimicrobial, anti-inflammatory and anticancer activity. Mainly due to sinapic acid and its derivatives antioxidative activity, these compounds have been suggested for potential use in food processing, cosmetics, and the pharmaceutical industry.

___

  • 1. Abdel-Aal ESM, Choo TM, Dhillon S, Rabalski I. 2012. Free and bound phenolic acids and total phenolic in black, blue, and yellow barley and their contribution to free radical scavenging capacity, Cereal Chem, 89, 198-204.
  • 2. Abdel-Aal ESM, Rabalski I. 2013. Effect of baking on free and bound phenolic acids in wholegrain bakery products. J Cereal Sci, 57, 312-318.
  • 3. Manach C, Scalbert A, Morand C, Rémésy C, Jiménaz J. 2004. Polyphenols: Food sources and bioavailability. Am J Clin Nutr, 79, 727-747.
  • 4. Kim HJ, Hyun JN, Park JC, Kim JG, Lee SJ, Chun SC, Chung IM. 2007. Relation between phenolic compounds, anthocyanins content and antioxidant activity in colored barley germplasm. J Agr Food Chem, 55, 4802-4809.
  • 5. Gamel TH, Abdel-Aal ESM. 2012. Phenolic acids and antioxidant properties of barley wholegrain and pearling fractions. Agr Food Sci, 21,118-131.
  • 6. Dykes L, Rooney LW. 2007. Phenolic compounds in cereal grains and their health benefits. Cereal Food World, 52(3):105-111.
  • 7. Ragaee S, Seetharaman K, Abdel-Aal ESM. 2014. The impact of milling and thermal processing on phenolic compounds in cereal grains. Crit Rev Food Sci, 54, 837-849.
  • 8. Mattila P, Pihlava JM, Hellström J. 2005. Contents of phenolic acids, alkyl- and alkenylresorcinols, and avenanthramides in commercial grain products. J Agr Food Sci, 53, 8290-8295.
  • 9. Liu RH. 2007. Whole grain phytochemicals and health. J Cereal Sci, 46, 207-219.
  • 10. Manach C, Scalbert A, Morand C, Rémésy C, Jimenez L. 2004. Polyphenols: food sources and bioavailability. Am J Clin Nutr, 9:727-47.
  • 11. Budryn G, Rachwal-Rosiak D. 2013. Interactions of hydroxycinnamic acids with proteins and their technological and nutritional implications. Food Rev Int, 29, 217-230.
  • 12. Gani A, Wani SM, Masoodi FA, Hameed G. 2012. Whole-grain cereal bioactive compounds and their health benefits. J Food Process Technol, 3,146. doi:10.4172/2157-7110.1000146
  • 13. Thiyama U, Stöckmanna H, Feldeb TZ, Schwarza K. 2006. Antioxidative effect of the main sinapic acid derivatives from rapeseed and mustard oil by-products. Eur J Lipid Sci Tech, 108, 239-248.
  • 14. Li L, Shewry PR, Ward JL. 2008. Phenolic acids in wheat varieties in the health grain diversity screen. J Agr Food Chem, 56(21), 9732-9739.
  • 15. Nićiforović N, Abramovič H. 2014. Sinapic acid and ıts derivatives: natural sources and bioactivity. Compr Rev Food Sci F, 13, 34-51.
  • 16. Gaspar A, Martines M, Silva P, Garrido EM, Garrido J, Firuzi O, Miri R, Saso L, Borges F. 2010. Dietary phenolic acids and derivatives. Evaluation of the antioxidant activity of sinapic acid and its alkyl esters. J Agr Food Chem, 58, 11273-11280.
  • 17. Bondia-Pons I, Aura AM, Vuorela S, Kolehmainen M, Mykkanen H, Poutanen K. 2009. Rye phenolics in nutrition and health. J Cereal Sci, 49, 323-36.
  • 18. Chen CY, Milbury PE, Kwak HK, Collins FW, Samuel P, Blumberg JB. 2004. Avenanthramides and phenolic acids from oats are bioavailable and act synergistically with vitamin C to enhance hamster and human LDL resistance to oxidation. J Nutr, 134, 1459-66.
  • 19. Ndolo VU, Beta T. 2013. Comparative studies on composition and distribution of phenolic acids in cereal grain botanical fractions. J Cereal Chem, http://dx.doi.org/10.1094/CCHEM-10-13-0225-R
  • 20. Bengmark S, Mesa MD, Gil A. 2009. Plant-derived health: The effects of turmeric and curcuminoids. Nutr Hosp, 24, 273-281.
  • 21. Soory M. 2009. Relevance of nutritional antioxidant in metabolic syndrome, ageing and cancer: potential for therapeutic targeting. Infect Disord Drug Targets, 9, 400-414.
  • 22. Lee DS, Woo JY, Ahn CB, Je JY. 2014. Chitosan-hydroxycinnamic acid conjugates: Preparation, antioxidant and antimicrobial activity. Food Chem, 148, 97-104.
  • 23. Dewanto V, Wu X, Liu RH. 2002. Processed sweet corn has higher antioxidant activity. J Agr Food Chem, 50, 4959-4964.
  • 24. Materska M, Perucka I. 2005. Antioxidant activity of the main phenolic compounds isolated from hot pepper fruit (Capsicum annuum L.). J Agr Food Chem, 53,1750-1756.
  • 25. Marinova EM, Yanishlieva NV. 2003. Antioxidant activity and mechanism of action of some phenolic acids at ambient and high temperatures. Food Chem, 81, 189-197.
  • 26. Rice-Evans CA, Miller NJ, Paganga G. 1996. Structure antioxidant activity relationships of flavonoids and phenolic acids. Free Radical Bio Med, 20(7), 933- 956.
  • 27. Razzaghi-Asl N, Garrido J, Khazraei H, Borges F, Firuzi O. 2013. Antioxidant properties of hydroxycinnamic acids: a review of structure-activity relationships. Curr Med Chem, 15, 4436-4450.
  • 28. Talcott ST, Howard LR, Brenes C. H. 2000. Contribution of periderm material and blanching time to the quality of pasteurized peach puree. J Agr Food Chem, 48, 4590-4596.
  • 29. Rossi M, Giussani E, Morelli R, Lo Scalzo R, Nani R C, Torreggiani D. 2003. Effect of fruit blanching on phenolics and radical scavenging activity of highbush blueberry juice. Food Res Int, 36, 999-1005.
  • 30. Nayak B, Liu RH, Tang J. 2013. Effect of processing on phenolic antioxidants of fruits, vegetables and grains - A review. Crit Rev Food Sci, http://dx.doi.org/10.1080/10408398.2011.654142
  • 31. Dimberg LH, Sunnerheim K, Sundberg B, Walsh K. 2001. Stability of oat avenanthramides. Cereal Chem, 78, 278-281.
  • 32. Hübner F, Arendt EK. 2013. Germination of cereal grains as a way to improve the nutritional value: a review. Crit Rev Food Sci, 53, 853-861.
  • 33. Andersson AAM, Dimberg L, Åman P, Landberg R. 2014. Recent findings on certain bioactive components in whole grain wheat and rye. J Cereal Sci, 59, 294-311.
  • 34. El-Sayed MAA, Rabalski I. 2013. Effect of baking on free and bound phenolic acids in wholegrain bakery products. J Cereal Sci, 57, 312-318.
  • 35. Réblová Z. 2012. Effect of temperature on the antioxidant activity of phenolic acids. Czech J Food Sci, 30, 171-177.
  • 36. Kmiecik D, Korczak J, Rudzinska M, Kobus-Cisowska J, Gramza- Michalowska A, Hes M. 2011. β-Sitosterol and campesterol stabilisation by natural and synthetic antioxidants during heating. Food Chem, 128,937-42.
  • 37. Subba Rao, MV, Muralikrishna G. 2002. Evaluation of the antioxidant properties of free and bound phenolic acids from native and malted finger millet (Ragi, Eleusine coracana Indaf-15). J Agr Food Chem, 50, 889-892.
  • 38. Robbins RJ. 2003. Phenolic acids in foods: an overview of analytical methodology. J Agr Food Chem, 51, 2866-2887.
  • 39. Kim, KH, Tsao R, Yang R, Cui SW. 2006. Phenolic acid profiles and antioxidant activities of wheat bran extracts and the effect of hydrolysis conditions. Food Chem, 95, 466-473.
  • 40. Belobrajdic DP, Bird AR. 2013. The potential role of phytochemicals in wholegrain cereals for the prevention of type-2 diabetes. Nutr J, 12, 62. http://www.nutritionj.com/content/12/1/62
  • Cherng YG, Tsai CC, Chung HH, Lai YW, Kuo SC, Cheng JT. 2013. Antihyperglycemic action of sinapic acid in diabetic rats. J Agr Food Chem, 61, 12053-12059.
  • Wilson JS, Ganesan K, Palanisamy M. 2011. Effect of sinapic acid on biochemical markers and histopathological studies in normal and streptozotocin induced diabetes in wistar rats. Int J Pharm Pharm Sci, 3(4), 115-120.
  • Voung QV, Hirun S, Philips PA, Chuen TLK, Bowyer MC, Goldsmith CD, Scarlett, CJ. 2014. Fruit-derived phenolic compounds and pancreatic cancer: Perspectives from Australian native fruits. J Ethnopharmacol, 152, 227-242.
  • Zeng WC, Zhu RX, Jia LR, Gao H, Zheng Y, Sun Q. 2011. Chemical composition, antimicrobial and antioxidant activities of essential oil from Gnaphlium affine. Food Chem Toxicol, 49, 1322-1328.
  • Gibbons S. 2005. Plants as a source of bacterial resistance modulators and anti-infective agents. Phytochem Rev, 4, 63-78.
  • Johnson ML, Dahiya JP, Olkowski AA, Classe HL. 2008. The effect of dietary sinapic acid (4-hydroxy-3, 5-dimethoxy-cinnamic acid) on gastrointestinal tract microbial fermentation, nutrient utilization, and egg quality in laying hens. Poultry Sci, 87, 958-963.