Süt Proteinlerinin Gıda Endüstrisinde Nanoteknolojik Olarak Uygulama Alanları

Nanoteknolojinin gıda endüstrisinde kullanımı son yıllarda önem kazanmıştır. Süt proteinleri sahip oldukları yapısal ve fizikokimyasal özelliklerinden dolayı çeşitli biyoaktif maddelerin ve nutrasetiklerin nano düzeyde üretilmelerinde bir araç olarak kullanılabilmektedir. Kazein ve peyniraltı suyu proteinleri gıda nanoteknolojisinde nanokürecikler, nanopartiküller, iç kabuklu nanoyapılar, emülsiyonlar veya nanotüpler olmak üzere çeşitli formlarda bulunabilmektedir. Bu derlemede, gıda endüstrisinde nanoteknoloji uygulamaları ve süt proteinlerinin bu uygulamalardaki önemi hakkında bilgiler verilecektir. Bunun yanında konu ile ilgili risk değerlendirmesi ve ilgili düzenlemeler üzerinde de durulacaktır.

Nanotechnological Application Fields of Milk Proteins in the Food Industry (Turkish with English Abstract)

In recent years, the use of nanotechnology has become important within the food industry. Milk proteins can be used as nano vehicles in the delivery of various bioactives and nutraceuticals, due to their structural and physicochemical properties. Casein and whey proteins can be found in different forms of food nanotechnology, such as: nanospheres, nanoparticles, core-shell nanostructures, nanoemulsions, or nanotubes. This study provides information about the applications of nanotechnology within the food industry and the importance of milk proteins in these applications. Furthermore, a related risk assessment and regulations will also be discussed.

___

  • Lagaron JM, Cabedo L, Cava D, Feijoo JL, Gavara R, Gimenez E. 2005. Improving packaged food quality and safety. Part 2: Nanocomposites. Food Addit Contam, 22, 994-998.
  • Vo-Dinh T (ed), Lan EH, Dunn B, Zink JI. 2005. Protein nanotechnology. New Jersey: Humana Press Inc, 53-80 p.
  • Vo-Dinh T (ed), Vo-Dinh T. 2005. Protein nanotechnology. New Jersey: Humana Press Inc, 1-4 p. 4. Weiss J, Takhistov P, McClements DJ. 2006. Functional materials in food nanotechnology. J Food Sci, 71(9), R107-R116.
  • National Nanotechnology Initiative, 2012. http://www.nano.gov (Erişim tarihi 1 Mart 2012). 6. Nickols-Richardson SM. 2007. Nanotechnology: Implications for food and nutrition professionals. J Am Diet Assoc, 107(9), 1494-1497.
  • Sozer N, Kokini JL. 2009. Nanotechnology and its applications in the food sector. Trends Biotechnol, 27(2), 82-89.
  • Popov KI, Filippov AN, Khurshudyan SA. 2010. Food nanotechnologies. Russ J Gen Chem, 80(3), 630-642.
  • Rashidi L, Khosravi-Darani K. 2011. The applications of nanotechnology in food industry. Crit Rev Food Sci Nutr, 51, 723-730.
  • Abdel El-Salam MH, El-Shibiny S. 2012. Formation and potential uses of milk proteins as nano delivery vehicles for nutraceuticals: A review. Int J Dairy Technol, 65(1), 13-21.
  • Chen L, Remondetto GE, Subirade M. 2006. Food protein-based materials as nutraceutical delivery systems. Trends Food Sci Technol, 17, 272-283.
  • Livney YD. 2010. Milk proteins as vehicles for bioactives. Curr Opin Colloid In Sci, 15, 73-83.
  • Graveland-Bikker JF, de Kruif CG. 2006. Unique milk protein based nanotubes: Food and nanotechnology meet. Trends Food Sci Technol, 17, 196-203.
  • Semo E, Kesselman E, Danino D, Livney YD. 2007. Casein micelle as a natural-capsular vehicle for nutraceuticals. Food Hydrocolloid, 21, 936-942. 15. Huppertz T, de Kruif CG. 2008. Structure and stability of nanogel particles prepared by internal cross-linking of casein micelles. Int Dairy J, 18, 556-565.
  • Giroux HJ, Houde J, Britten M. 2010. Preparation of nanoparticles from denatured whey protein by pH-cycling treatment. Food Hydrocolloid, 24, 341-346.
  • Chaudhry Q, Castle L. 2011. Food applications of nanotechnologies: An overview of opportunities and challenges for developing countries. Trends Food Sci Technol, 22, 595-603.
  • Chaudhry Q, Scotter M, Blackburn J, Ross B, Boxall A, Castle L, Robert A, Richard W. 2008. Applications and implications of nanotechnologies for the food sector. Food Addit Contam, 25(3), 241-258.
  • Watkins R. (ed), Chaudhry Q, Castle L, Watkins R. 2010. Nanotechnologies in food. Royal Society of Chemistry Publishers, ISBN 978- 0-85404-169-5.
  • Lopez-Rubio A, Gavara R, Lagaron JM. 2006. Bioactive packaging: turning foods into healthier foods through biomaterials. Trends Food Sci Technol, 17, 567-575.
  • Fox APF and McSweeney PLH (ed), de Kruif CG, Holt C. 2003. Advanced dairy chemistry-1 proteins part. Kluwer Academic/Plenum Publishers, New York, USA, 233-276 p.
  • Kuraishi C, Katsutoshı Y, Susa Y. 2001. Transglutaminase: Its utilization in the food industry. Food Rev Int, 17(2), 221-246.
  • Mounsey JS, O’Kennedy BT, Kelly PM. 2005. Influence of transglutaminase treatment on properties of micellar casein and products made therefrom. Dairy Sci Technol (Lait), 85, 405-418. 24. Aimi N, Nemori R, Ogiwarw K. 2012. Casein nanoparticles. US Patent No. 20090280148. URL http://www.faqs.org/patents/app/20090280148 (Erişim tarihi 1 Mart 2012).
  • Kanazawa K. 2010. Casein nanoparticles. US Patent, 20100143424, USPC class 424401.
  • Zimet P, Rosenberg D, Livney YD. 2011. Re-assembled casein micelles and casein nanoparticles as nano-vehicles for ω-3 polyunsaturated fatty acids. Food Hydrocolloid, 25, 1270-1276.
  • Portnaya I, Ben-Shohan E, Cogan U, Khalfin R, Fass D, Ramon O, Danino D. 2008. Self-assembly of bovine β-casein below the isoelectric pH. J Agric Food Chem, 58, 2192-2198.
  • Bargarum J, Danino D, Livney YD. 2009. Nano encapsulation of vitamin D in β-casein micelles. IFT 2009 Annual Meeting, June, Anheim, CA, USA. 29. Pan X, Yao P, Jiang M. 2007. Simultaneous nanoparticle formation and encapsulation driven by hydrophobic interaction of casein-graft-dextran and β-carotene. J Colloid Interf Sci, 315, 456-463. 30. Danino D, Livney YD, Ramon D, Portnoy I, Cogan U. 2009. β-casein assemblies for enrichment of food and beverages and methods for preparation thereof. Patent (WO/2009/101612).
  • Qui Y, Park K. 2001. Environment-sensitive hydrogels for drug delivery. Adv Drug Deliver Rev, 53, 321-329.
  • Gunasekaran S, Ko S, Xiao L. 2007. Use of whey proteins for encapsulation and controlled delivery applications. J Food Eng, 83, 31-40.
  • Schmitt CJE, Bovetto L. 2007. Whey protein vehicle for active agent delivery. European Patent Application. 1 839 498 A1.
  • Zhang W, Zhong Q. 2009. Microemulsions as nanoreactors to produce whey protein nanoparticles with enhanced heat stability by sequential enzymatic cross-linking and thermal pretreatment. J Agric Food Chem, 57, 9181-9189.
  • Shpigelman A, Israeli G, Liveny YD. 2010. Thermally-induced protein-polyphenol coassemblies: β-lactoglobulin-based nanocomplexes as protective nanovehicles for EGCG. Food Hydrocolloid, 24, 735-743.
  • Bengoechea C, Peinado I, McClements DJ. 2011. Formation of protein nanoparticles by controlled heat treatment of lactoferrin: factors affecting particle characteristics. Food Hydrocolloid, 25, 1227-1232.
  • Beulens JWJ, Bindels JG, de Graaf C, Alles MS, Wouters-Wesseling W. 2004. Alpha-lactalbumin combined with a regular diet increases plasma Trp-LNAA ratio. Physiol Behav, 81, 585-593.
  • Hakansson A, Zhivotovsky B, Orrensius S, Sabharwal H, Svanborg C. 1995. Apoptosis induced by a human milk protein. Proceedings of the National Academy of Sciences of the United States of America, 92, 8064-8068.
  • Pellegrini A, Thomas U, Bramaz N, Hunziker P, von Fellenverg R. 1999. Isolation and identification of three bactericidal domains in the bovine α-lactalbumin molecule. Biochim Biophys Acta, 1426, 439-448.
  • Cushen M, Kerry J, Morris M, Cruz-Romero M, Cummins E. 2012. Nanotechnologies in the food industry - Recent developments, risks and regulation. Trends Food Sci Technol, 24(1), 30-46.
  • Maynard A. 2012. Presentation: nanotechnology and human health impact. A framework for strategic research. http://www.nanotechproject.org/ process/files/2741/18_nanotechnologyhumanhe- althimpactframeworkstrategicresearch.pdf (Erişim tarihi 1 Mart 2012).
  • Maynard AD. 2006. Nanotechnology. Assessing the risks. Nano Today, 1(2), 22-33.
  • Nel A, Xia T, Madler L, Li N. 2006. Toxic Potential of Materials at the Nanolevel. Sci, 311, 622-627.
  • Munro IC, Haighton LA, Lynch BS, Tafazoli S. 2009. Technological challenges of addressing new and more complex migrating products from novel food packaging materials. Food Addit Contam, 26(12), 1534-1546.
  • Tiede K, Boxall ABA, Tear SP, Lewis J, David H, Hassellov M. 2008. Detection and characterization of engineered nanoparticles in food and the environment. Food Addit Contam, 25, 795-821.
  • Card JW, Magnuson BA. 2010. A method to assess the quality of studies that examine the toxicity of engineered nanomaterials. Int J Toxic, 29(4), 402-410.
  • Carlson C, Hussain SM, Schrand AM, Braydich-Stolle K, Hess KL, Jones RL, Schlager JJ. 2008. Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem B, 112(43), 13608-13619.
  • Chau C-F, Wu S-H, Yen G-C. 2007. The development of regulations for food nanotechnology. Trends Food Sci Technol, 18, 269-280.
  • Sorrentino A, Gorrasi G, Vittoria V. 2007. Potential perspectives of bionanocomposites for food packaging applications. Trends Food Sci Technol, 18, 84-95.
  • Food and Drug Administration. 2012. FDA Regulation of Nanotechnology Products. http://www.fda.gov/nanotechnology (Erişim tarihi 1 Mart 2012).
  • Institute of Food Science and Technology (IFST). 2012. Nanotechnology information statement. http://www.ifst.org (Erişim tarihi 1 Mart 2012).