Fermantasyon Yoluyla Pullulan Üretimi ve Gıda Endüstrisinde Kullanımı

Pullulan, mikrobiyel kaynaklı üretimi yaygın olarak gerçekleştirilen ve önemli özellikleri sayesinde gıda formülasyonlarında ve ambalaj endüstrisinde kaplama materyali olarak geniş kullanım alanına sahip olan bir polisakkarittir. Ayrıca, pullulan; polimorfik mantar olan Aureobasidium pullulans tarafından üretilen ve glikoz birimlerine sahip bir homopolisakkarit olup maltotriozların α-1,6 bağlanmasıyla oluşan zincir yapı olarak da tanımlanmaktadır. Pullulan üretiminde mikrobiyel yolların kullanılması saflık değeri yüksek ve düşük maliyetli pullulan üretimini olanaklı kılmaktadır. Pullulan “Genel Olarak Güvenli Kabul Edilen (GRAS)” bileşenler statüsünde yer aldığından gıdalarda uygun dozlarda olmak üzere kullanımında herhangi bir sorun teşkil etmemektedir. Bu çalışma kapsamında pullulan, fermantasyonla pullulan üretimine etki eden faktörler ve pullulanın kullanım alanları ile ilgili bilgiler verilmiştir.

Pullulan Production by Fermentation and Usage in Food Industry (Turkish with English Abstract)

Pullulan, which is generally materialized by the production of microbial origin, has widely usage as a coating agent in food formulations and packaging industry owing to its unique properties. Moreover, pullulan is a linear homopolysaccaride produced by the polymorphic fungus Aureobasidium pullulans, which is composed of glucose units and often described as α-1,6-linked maltotriose. Using microbial techniques enable to produce cheap and high purity pullulan. Pullulan takes place in “Generally Recognized As Safe (GRAS)” and therefore appropriate doses can be used in foods seamlessly. The aim of this study is to present a review about pullulan, effect fermentation parameters of producing pullulan and usage of pullulan in the food industry.

___

  • Leathers TD. 2003. Biotechnological production and applications of pullulan. Appl Microbiol Biot, 62, 468–473.
  • Forabosco A, Bruno G, Sparapano L, Liut G, Marino D, Delben F. 2006. Pullulans produced by strains of Cryphonectria parasitica-I. Production and characterization of the exopolysaccharides. Carbohyd Polym, 63, 535–544.
  • Delben F, Forabosco A, Guerrini M, Liut G, Torri G. 2006. Pullulans produced by strains of Cryphonectria parasitica-II. Nuclear magnetic resonance evidence. Carbohyd Polym, 63, 545–554. 4. Reis RA, Tischer CA, Gorrin PAJ, Iacomini M. 2002. A new pullulan and a branched (1-3)-(1-6)- linked β-glucan from the lichenised ascomycete Teloschistes flavicans. FEMS Microbiol Lett, 210, 1–5. 5. Chi Z, Zhao S. 2003. Optimization of medium and cultivation conditions for pullulan production by a new pullulan-producing yeast strain. Enzyme Microb Tech, 33, 206-211.
  • Gaur R, Singh R, Tiwari S, Yadav SK, Daramwal NS. 2010. Optimization of physico-chemical and nutritional parameters for a novel pullulan- producing fungus, Eurotium chevalieri. J Appl Microbiol, 109: 1035-1043.
  • Shingel KI. 2004. Current knowledge on biosynthesis, biological activity, and chemical modification of the exopolysaccharide, pullulan. Carbohyd Res, 339, 447–460.
  • Wu S, Jin Z, Tong Q, Chen H. 2009. Sweet potato: A novel substrate for pullulan production by Aureobasidium pullulans. Carbohyd Polym, 76, 645–649.
  • Thirumavalavan K, Manikkadan TR, Dhanasekar R. 2009. Pullulan production from coconut by-products by Aureobasidium pullulans. Afr J Biotechnol, 8, 254–258.
  • Imeson A. 2010. Food stabilisers, Thickeners and Gelling Agents, Wiley-Blackwell, United Kingdom, pp. 354.
  • Vijayendra SVN, Bansal D, Prasad MS, Nand K. 2001. Jaggery: A novel substrate for pullulan production by Aureobasidium pullulans CFR-77. Process Biochem, 37, 359–364.
  • Roukas T, Biliaderis CG. 1995. Evaluation of carob pod as a substrate for pullulan production by Aureobasidium pullulans. Appl Biochem Biotech, 55, 27–44.
  • US FDA. 2002. Agency Response Letter: GRAS Notice No. GRN 000099 [Pullulan]. College Park, Maryland: U.S. Food and Drug Administration (U.S. FDA), Center for Food Safety and Applied Nutrition (CFSAN), Office of Food Additive Safety. 14. Kimoto T, Shibuya T, Shiobara S. 1997. Safety studies of a novel starch, pullulan: Chronic toxicity in rats and bacterial mutagenicity. Food Chem Toxicol, 35, 323–329.
  • Wolf BW. 2005. Use of pullulan as a slowly digested carbohydrate. US Patent Office, Pat. No. 6 916 796.
  • Gounga ME, Xu S, Wang Z. 2007. Whey protein isolate-based edible films as affected by protein concentration, glycerol ratio and pullulan addition in film formation. J Food Eng, 83: 521-530.
  • Rekha MR, Sharma CP. 2007. Pullulan as a promising biomaterial for biomedical applicati- ons: a perspective. Trends in Biomaterials and Artificial Organs 20 (2), 116–121.
  • Youssef F, Roukas T, Biliaderis CG. 1999. Pullulan production by a non-pigmented strain of Aureobasidium pullulans using batch and fed-batch culture. Process Biochem, 34, 355–366. 19. Ghimici L, Constantin M, Fundueanu G. 2010. Novel biodegradable flocculanting agents based on pullulan. J Hazard Mater, 181: 351-358.
  • Embuscado ME, Huber KC. 2009. Edible Films and Coatings for Food Applications, Springer, Dordrecht Heidelberg London New York, pp. 403. 21. http://en.wikipedia.org/wiki/File:Pullulan.png (Accessed 04 April 2008)
  • Kshirsagar AC, Yenge VB, Sarkar A, Singhal RS. 2009. Efficacy of pullulan in emulsification of turmeric oleoresin and its subsequent microencapsulation. Food Chem, 113: 1139-1145. 23. Rekha MR, Sharma CP. 2009. Blood compatibility and in vitro transfection studies on catioically modified pullulan for liver cell targeted gene delivery. Biomaterials, 30: 6655-6664.
  • Zhang H, Gao F, Liu L, Li X, Zhou Z, Yang X, Zhang Q. 2009. Pullulan acetate nanoparticles prepared by solvent diffusion method for epirubicin chemotherapy. Colloid and Surface B, 71: 19-26. 25. Göksungur Y, Uzunoğulları P, Dağbağlı S. 2011. Optimization of pullulan production from hydrolysed potato starch waste by response surface methodology. Carbohyd Polym, 83, 1330-1337.
  • Singh RS, Saini GK, Kennedy JF. 2010. Pullulan: Microbial sources, production and applications. Carbohyd Polym, 73, 515-531.
  • Duan X, Chi Z, Wang L, Wang X. 2008. Influence of different sugars on pullulan production and activities of a-phosphoglucose mutase, UDPG- pyrophosphorylase and glucosyltransferase involved in pullulan synthesis in Aureobasidium pullulans Y68. Carbohyd Polym, 73, 587-593.
  • Cheng KC, Demirci A, Catchmark JM, Puri VM. 2010. Effects of initial ammonium ion concentration on pullulan production by Aureobasidium pullulans and its modeling. J Food Eng, 103, 115-122.
  • Jiang L. 2010. Optimization of fermentation conditions for pullulan production by Aureobasidium pullulan using response surface methodology. Carbohyd Polym, 79, 414-417.
  • West TP, Strohfus B. 1997. Effect of manganese on polysaccharide production and cellular pigmentation in the fungus Aureobasidium pullulans. World J Microbiol Biotech, 13, 233–235. 31. Reeslev M, Jensen B. 1995. Influence of Zn2+ and Fe3+ on polysaccharide production and ycelium /yeast dimorphism of Aureobasidium pullulans in batch cultivations. Appl Microbiol Biot, 42, 910–915. 32. Cheng KC, Demirci A. 2009. Effects of plastic composite support and pH profiles on pullulan production in a biofilm reactor. Biotechnological Products and Process Engineering, 86, 853-861. 101
  • Cheng KC, Demirci A, Catchmark JM. 2010. Enhanced pullulan production in a biofilm reactor by using response surface methodology. J Ind Microbiol Biot, 37, 587-594.
  • Gaidhani HK, McNeil B, Ni X. 2005. Fermentation of pullulan using an oscillatory baffled fermenter. Chem Eng Res Des, 83(A6): 640–645.
  • Choudhury AR, Saluja P, Prasad GS. 2011. Pullulan production by an osmotolerant Aureobasidium pullulans RBF-4A3 isolated from flowers of Caesulia axillaris. Carbohyd Polym, 83: 1547-1552.
  • Ravella SR, Quiñones TS, Retter A, Heiermann TA, Hobbs PJ. 2010. Extracellular polysaccharide (EPS) production by a novel strain of yeast-like fungus Aureobasidium pullulans. Carbohyd Polym, 82: 728-732.
  • West TP. 2010. Pululan production by Aureobasidium pullulans cells immobilized on ECTEOLA-cellulose. Ann Microbiol, 60: 763-766. 38. Wu S, Chen H, Jin Z, Tong Q. 2010. Effect of two-stage temperature on pullulan production by Aureobasidium pullulans. World J Microbiol Biotechnol, 26: 737-741.
  • Ürküt Z, Dağbağlı S, Göksungur Y. 2007. Optimization of pullulan production using Ca-alginate immobilized Aureobasidium pullulans by response surface methodology. J Chem Technol Biot, 82: 837-846.
  • West TP. 2011. Pullulan production by Aureobasidium pullulans cells immobilized in chitosan beads. Folia Microbiol, 56: 335-338.
  • Singh RS, Singh H, Saini GK. 2009. Responce surface optimization of the critical medium components for pullulan production by Aureobasidium pullulans FB-1. Appl Biochem Biotech, 152: 42-53.
  • Cheng K, Demirci A, Catchmark JM, Puri VM. 2010. Modeling of pullulan fermentation by using a color variant strain of Aureobasidium pullulans. J Food Eng, 98: 353-359.
  • Kim Y, Lee S, Gao W, Chung C, Son C, Lee J. 2011. Application of statistical experimental design for optimization of downstream process for recovery of pullulan produced by Aurobasidium pullulans HP-2001. Korean J Chem Eng, 28: 1580-1586.
  • Singh RS, Saini GK, Kennedy JF. 2009. Downstream processing and characterization of pullulan from novel colour variant strain of Aureobasidium pullulans FB-1. Carbohyd Polym 78: 89-94.
  • Wu S, Jin Z, Kim JM, Tong Q, Chen H. 2009. Downstream processing of pullulan from fermentation broth. Carbohyd Polym 77: 750-753.
  • Li B, Zhang N, Peng Q, Yin T, Guan F, Wang G, Li Y. 2009. Production of pigment-free pullulan by swollen cell in Aureobasidium pullulans NG which cell differentiation was affected by pH and nutrition. Appl Microbiol Biot, 84: 293-300.
  • Singh RS, Saini GK, Kennedy JF. 2010. Maltotriose syrup preparation from pullulan using pullulanase. Carbohyd Polym, 80, 401-407. 48. Zareian S, Khajeh K, Ranjbar B, Dabirmanesh B, Ghollasi M, Mollania N. 2010. Purification and characterization of a novel amylopullulanase that converts pullulan to glucose, maltose, and maltotriose and starch to glucose and maltose. Enzyme Microb Tech, 46: 57-63.
  • Göksungur Y, Baysal T, Güvenç U, Harsa Ş, Lermioğlu F, Baysal H, Ersus S, Dağbağlı S, Kandemir NS. 2008. Aureobasidium pullulans ile pullulan üretiminin optimizasyonu ve kimyasal koruyucu (antioksidan ve antimikrobiyal) içeren pullulan filmin orta nemli gıdaların raf ömrüne etkileri. TOVAG-104 O 155. Ege Üniversitesi, İzmir, 145 s. 50. Sakata Y, Otsuka M. 2009. Evaluation of relationship between molecular behaviour and mechanical strength of pullulan films. Int J Pharm, 374, 33–38.
  • Tong Q, Xiao Q, Lim LT. 2008. Preparation and properties of pullulan-alginate-carboxy- methylcellulose blend films. Food Res Int, 41, 1007-1014.
  • Shih FF, Daigle KW, Champagne ET. 2011. Effect of rice wax on water vapour permeability and sorption properties of edible pullulan films. Food Chem, 127: 118-121.
  • Fundueanu G, Constantin M, Oanea I, Harabagiu V, Ascenzi P, Simionescu BC. 2010. Entrapment and release of drugs by a strict "on- off" mechanism in pullulan microspheres with pendant thermosensitive groups. Biomaterials, 31: 9544-9553.
Gıda-Cover
  • ISSN: 1300-3070
  • Yayın Aralığı: Yılda 6 Sayı
  • Başlangıç: 1976
  • Yayıncı: Prof. Dr. İbrahim ÇAKIR