Peynirdeki Proteolitik Ajanların Proteolize Etkisi

Peynirin olgunlaşma süreci çok komplekstir ve bazı mikrobiyolojik ve biyokimyasal değişiklikleri içerir. Bu biyokimyasal değişikliklerden biri olan proteoliz peynirde tekstür ve lezzet gibi özelliklerin gelişiminde önemli bir rol oynamaktadır. Tekstür ve lezzete proteolizin katkısı direkt olarak peptit ve aminoasitlerin salınımıyla ya da aminoasitlerin amin, asit, tiyol ve tiyoesterlere katabolize edilmesiyle olabilir. Bu reaksiyonlar koagülant enzimleri, doğal süt proteolitik enzimleri, laktik asit bakterileri, propiyonobakteri ve farklı küf çeşitlerinden gelen proteinaz veya peptidazlar vasıtasıyla katalize edilir. Proteolize katkıda bulunan bu proteolitik ajanların aktivitesi uzunca bir süredir peynirin olgunlaşma çalışmalarına konu olmaktadır. Bu derlemede proteolize etki eden proteolitik ajanların proteolitik sistemleri, bu sistemlerin protein ve aminoasitlerin parçalama reaksiyonlarını nasıl gerçekleştirdiği ve lezzet bileşiklerinin oluşumu ele alınacaktır.

Effect of Proteolytic Agents on Proteolysis in Cheese (Turkish with English Abstract)

The ripening process of cheese is very complex and involves some microbiological and biochemical changes. One of these biochemical changes is proteolysis in cheese plays an important role in the development of characteristics such as texture and flavour. The contribution of proteolysis to texture and flavour may be direct, by releasing peptides and amino acids, or indirect, by catabolizing amino acids to amines, acids, thioles, thioesters. These reactions are catalyzed by enzymes from coagulant, indigenous milk proteolytic enyzmes, proteinases or peptidases from lactic acid bacteria, propionibacterium and different fungi strains. The activity of these proteolytic agents which contribute proteolysis has been the subjected of many cheese ripening studies for a long time. In this review, it will be dealt with proteolytic systems of proteolytic agents that affect proteolysis, these systems perform how to protein and amino acids degradation reactions and formation of flavour compounds.

___

  • Marilley L, Casey MG. 2004. Flavors of cheese products: metabolic pathways, analytical tools and identification of producing strains. Int J Food Microbiol, 90 (2), 139-159.
  • Rodriguez-Saona LE, Subramanian A, Alvarez VB, Harper WJ. 2011. Monitoring amino acids, organic acids, and ripening changes in Cheddar cheese using Fourier-transform infrared spectroscopy. Int Dairy J, 21 (6), 434-440.
  • Delgado FJ, Rodriguez-Pinilla J, Gonzalez- Crespo J, Ramirez R, Roa I. 2010. Proteolysis and texture changes of a Spanish soft cheese ('Torta del Casar') manufactured with raw ewe milk and vegetable rennet during ripening. Int J Food Sci Technol, 45 (3), 512-519.
  • McSweeney PLH, 2004. Biochemistry of cheese ripening. Int J Dairy Technol, 57 (2-3), 127-144.
  • Teiada L, Abellan A, Cayuela JM, Martinez- Cacha A, Fernandez-Salguero J. 2008. Proteolysis in goats' milk cheese made with calf rennet and plant coagulant. Int Dairy J, 18 (2), 139-146.
  • Pereira CI, Gomes EO, Gomes AMP, Malcata FX. 2008. Proteolysis in model Portuguese cheeses: Effects of rennet and starter culture. Food Chem, 108 (3), 862-868.
  • Wilkinson MG, Kilcawley KN. 2005. Mechanisms of incorporation and release of enzymes into cheese during ripening. Int Dairy J, 15 (6-9), 817-830.
  • Pino A, Prados F, Galan E, McSweeney PLH, Fernandez-Salguero J. 2009. Proteolysis during the ripening of goats' milk cheese made with plant coagulant or calf rennet. Food Res Int, 42 (3), 324-330.
  • Jaros D, Jacob M, Rohm H. 2011. Recent advances in milk clotting enzymes. Int J Dairy Technol, 64 (1), 14-33.
  • Candioti MC, Alonso MJ, Hynes E. 2007. Influence of residual milk-clotting enzyme and proteolysis on melting properties of soft cheese. Int J Dairy Technol, 60 (3), 175–181.
  • Bansal N, Fox PF, McSweeney PLH. 2009. Comparison of the level of residual coagulant activity in different cheese varieties. J Dairy Res, 76 (3), 290–293.
  • Esteves CLC, Lucey JA, Pires EMV. 2002. Rheological properties of milk gels made with coagulants of plant origin and chymosin. Int Dairy J, 12 (5), 427-434.
  • Cabezas L, Vioque M. 2011. Sensory and chemical evaluation of two ewe's milk cheeses made with different coagulants. Milchwissenschaft, 66 (1), 55-57.
  • Huppertz T, Uniacke T, Kelly AL, Fox PF. 2006. Inhibition of the proteolytic activity of indigenous plasmin or exogenous chymosin and pepsin in bovine milk by blood serum. Int Dairy J, 16 (6), 691-696.
  • Moatsou G, Bakopanos C, Katharios D, Katsaros G, Kandarakis I, Taoukis P, Politis I. 2008. Effect of high-pressure treatment at various temperatures on indigenous proteolytic enzymes and whey protein denaturation in bovine milk. J Dairy Res, 75 (3), 262-269.
  • Kelly AL, O'Flaherty F, Fox PF. 2006. Indigenous proteolytic enzymes in milk: A brief overview of the present state of knowledge Int Dairy J, 16 (6), 563-572.
  • Aydemir O, Dervişoğlu M, Temiz H, Yazıcı F. 2008. Süt alkali proteinazı, Gıda, 33 (5), 235-240. 18. Fox PF, McSweeney PLH. 1996. Proteolysis in cheese during ripening. Food Rev Int, 12 (4), 457-509.
  • Larsen LB, McSweeney PLH, Hayes MG, Andersen JB, Ingvartsen KL, Kelly AL. 2006. Variation in activity and heterogeneity of bovine milk proteases with stage of lactation and somatic cell count. Int Dairy J, 16 (1), 1-8.
  • Wedholm A, Moller HS, Lindmark-Mansson H, Rasmussen MD, Andren A, Larsen LB. 2008. Identification of peptides in milk as a result of proteolysis at different levels of somatic cell counts using LC MALDI MS/MS detection. J Dairy Res, 75 (1), 76-83.
  • Considine T, Healy A, Kelly AL, McSweeney PLH. 2004. Hydrolysis of bovine caseins by cathepsin B, an indigenous cysteine protease in milk. Int Dairy J, 14 (6), 117–124.
  • Hayes MG, Hurley MJ, Larsen LB, Heegaard CW, Magboul A, Oliveira JC, McSweeney PLH, Kelly AL. 2001. Thermal inactivation kinetics of bovine cathepsin D. J Dairy Res, 68 (2), 267–276. 23. Irigoyen A, Ortigosa M, Juansaras I, Oneca M, Torre P. 2007. Influence of an adjunct culture of Lactobacillus on the free amino acids and volatile compounds in a Roncal-type ewe's-milk cheese. Food Chem, 100 (1), 71-80.
  • Oneca M, Ortigosa M, Irigoyen A, Torre P. 2007. Proteolytic activity of some Lactobacillus paracasei strains in a model ovine-milk curd system: Determination of free amino acids by RP-HPLC. Food Chem, 100 (4), 1602-1610.
  • Milesi MM, Bergamini CV, Hynes E. 2011. Production of peptides and free amino acids in a sterile extract describes peptidolysis in hard- cooked cheeses. Food Res Int, 44 (3), 765-773.
  • Hannon JA, Kilcawley KN, Wilkinson MG, Delahunty CM, Beresford TP. 2007. Flavour precursor development in Cheddar cheese due to lactococcal starters and the presence and lysis of Lactobacillus helveticus. Int Dairy J, 17 (4), 316-327.
  • Christensson C, Bratt H, Collins LJ, Coolbear T, Holland R, Lubbers MW, O’Toole PW, Reid JR. 2002. Cloning and expression of an oligopeptidase, PepO, with novel specificity from Lactobacillus rhamnosus HN001 (DR20). Appl Environ Microbiol, 68 (1), 254-262.
  • Savijoki K, Ingmer H, Varmanen P. 2006. Proteolytic systems of lactic acid bacteria. Appl Microbiol Biotechnol, 71 (4), 394-406.
  • Yvon M, Gitton C, Chambellon E, Bergot G, Monnet V. 2011. The initial efficiency of the proteolytic system of Lactococcus lactis strains determines their responses to a cheese environment. Int Dairy J, 21 ( 5), 335-345.
  • Liu MJ, Bayjanov JR, Renckens B, Nauta A, Siezen RJ. 2010. The proteolytic system of lactic acid bacteria revisited: a genomic comparison. BMC genomics, 11 (1), 36.
  • Sridhar VR, Hughes JE, Welker DL, Broadbent JR, Steele JL. 2005. Identification of endopeptidase genes from the genomic sequence of Lactobacillus helveticus CNRZ32 and the role of these genes in hydrolysis of model bitter peptides. Appl Environ Microbiol, 71 (7), 4161-4161.
  • Jensen MP, Vogensen FK, Ardo Y. 2009. Variation in caseinolytic properties of six cheese related Lactobacillus helveticus strains. Int Dairy J, 19 (11), 661–668.
  • Picon A, Garcia-Casado MA, Nunez M. 2010. Proteolytic activities, peptide utilization and oligopeptide transport systems of wild Lactococcus lactis strains. Int Dairy J, 20 (3), 156-162.
  • Gagnaire V, Sadat-Mekmene L, Genay M, Atlan D, Lortal S. 2011. Original features of cell-envelope proteinases of Lactobacillus helveticus: A review. Int J Food Microbiol, 146 (1), 1-13.
  • Strompfova V, Laukova A, Ouwehand AC. 2004. Selection of Enterococci for potential canine probiotic additives. Vet Microbiol, 100 (1-2), 107-114.
  • Bhardwaj A, Malik RK, Chauhan P. 2008. Functional and safety aspects of enterococci in dairy foods. Indian J Microbiol, 48 (3), 317-325.
  • Topisirovic L, Veljovic K, Fira D, Terzic-Vidojevic A, Abriouel H, Galvez, A. 2009. Evaluation of antimicrobial and proteolytic activity of enterococci isolated from fermented products. Eur Food Res Technol, 230 (1), 63-70.
  • Thierry A, Maillard MB, Richoux R, Kerjean JR, Lortal S. 2005. Propionibacterium freudenreichii strains quantitatively affect production of volatile compounds in Swiss cheese. Lait, 85 (1-2), 57-74. 39. Treimo J, Vegarud G, Langsrud T, Rudi K. 2006. Use of DNA quantification to measure growth and autolysis of Lactococcus and Propionibacterium spp. in mixed populations. Appl Environ Microbiol, 72 (9), 6174-6182.
  • Sahlstrëm S, Langsrud T, Serhaug T. 1995. Characterization of peptidase activities associated with cell-walls of Propionibacterium freudenreichii, First International Symposium on Dairy Propionibacteria, 17-19 May, Rennes, France, 65 p.
  • El Soda M, Ziada N, Ezzat N. 1992. The intracellular peptide-hydrolase system of Propionibacterium. Microbios, 72, 65-74.
  • Lo´pez-D´ıaz TM, Santos J, Otero A, Garc´ıa ML, Moreno B. 1996. Some technological properties of Penicillium roquefortii strains isolated from a home-made blue cheese. Lett Appl Microbiol, 23 (1), 5-8.
  • Bracq E, Levieux A, Levieux D. 1997. Purification and immunochemical quantitation of Penicillium roquefortii acid aspartyl proteinase. J Dairy Res, 64 (1), 105-113.
  • Larsena MD, Kristiansen KR, Hanse TK. 1998. Characterization of the proteolytic activity of starter cultures of Penicillium roquefortii for production of blue veined cheeses. Int J Food Microl, 43 (3), 215-221.
  • Fernández-Bodega MA, Mauriz E, Gómez A, Martín JF. 2009. Proteolytic activity, mycotoxins and andrastin A in Penicillium roquefortii strains isolated from Cabrales, Valdeón and Bejes–Tresviso local varieties of blue-veined cheeses. Int J Food Microbiol, 136 (1), 18-25.
  • Boutrou R, Kerriou L, Gassi JY. 2006. Contribution of Geotrichum candidum to the proteolysis of soft cheese. Int Dairy J, 16 (7), 775-783.
  • Boutrou R, Aziza M, Amrane A. 2006. Enhanced proteolytic activities of Geotrichum candidum and Penicillium camembertii in mixed culture. Enzyme Microb Technol, 39 (2), 325-331.
  • Liu M, Nauta A, Francke C, Siezen RJ. 2008. Comparative Genomics of Enzymes in Flavor- Forming Pathways from Amino Acids in Lactic Acid Bacteria. Appl Environ Microbiol, 74 (15), 4590-4600.
  • Smit G, Smit BA, Engels WJ. 2005. Flavour formation by lactic acid bacteria and biochemical flavour profiling of cheese products. FEMS Microbiol Rev, 29 (3), 591-610.
  • Thierry A, Maillard MB. 2002. Production of cheese flavour compounds derived from amino acid catabolism by Propionibacterium fre- udenreichii. Lait, 82 (1), 17-32.
  • Mansour S, Beckerich JM, Bonnarme P. 2008. Lactate and Amino Acid Catabolism in the Cheese-Ripening Yeast Yarrowia lipolytica. Appl Environ Microbiol, 74 (21), 6505-6512.
  • Ardö Y. 2006. Flavour formation by amino acid catabolism. Biotechnol Adv, 24 (2), 238-242. 53. Yvon M, Rijnen L. 2001. Cheese flavour formation by amino acid catabolism. Int Dairy J, 11 (4-7), 185-201.